Skip to main content
Top

2020 | OriginalPaper | Chapter

On the Application of Flexible Designs When Searching for the Better of Two Anticancer Treatments

Authors : Christina Kunz, Lutz Edler

Published in: Statistical Modeling for Biological Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In search for better treatment, biomedical researchers have defined an increasing number of new anticancer compounds attacking the tumour disease with drugs targeted to specific molecular structure and acting very differently from standard cytotoxic drugs. This has put high pressure on early clinical drug testing since drugs may need to be tested in parallel when only a limited number of patients—e.g., in rare diseases—or limited funding for a single compound is available. Furthermore, at planning stage, basic information to define an adequate design may be rudimentary. Therefore, flexibility in design and conduct of clinical studies has become one of the methodological challenges in the search for better anticancer treatments. Using the example of a comparative phase II study in patients with rare non-clear cell renal cell carcinoma and high uncertainty about effective treatment options, three flexible design options are explored for two-stage two-armed survival trials. Whereas the two considered classical group sequential approaches integrate early stopping for futility in two-sided hypothesis tests, the presented adaptive group sequential design enlarges these methods by sample size recalculation after the interim analysis if the study has not been stopped for futility. Simulation studies compare the characteristics of the different design approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bauer, P., Bretz, F., Dragalin, V., König, F., & Wassmer, G. (2016). Twenty-five years of confirmatory adaptive designs: opportunities and pitfalls. Statistics in Medicine, 35, 325–347.MathSciNetCrossRef Bauer, P., Bretz, F., Dragalin, V., König, F., & Wassmer, G. (2016). Twenty-five years of confirmatory adaptive designs: opportunities and pitfalls. Statistics in Medicine, 35, 325–347.MathSciNetCrossRef
2.
go back to reference Bauer, P., & Köhne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics, 50, 1029–1041.CrossRef Bauer, P., & Köhne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics, 50, 1029–1041.CrossRef
3.
go back to reference Bauer, P., & Posch, M. (2004). Letter to the editor. Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections, by H. Müller, H.-H. Schäfer, Statistics in Medicine 2001; 20:3741–3751. Statistics in Medicine, 23, 1333–1335. Bauer, P., & Posch, M. (2004). Letter to the editor. Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections, by H. Müller, H.-H. Schäfer, Statistics in Medicine 2001; 20:3741–3751. Statistics in Medicine, 23, 1333–1335.
4.
go back to reference Brannath, W., Posch, M., & Bauer, P. (2002). Recursive combination tests. Journal of the American Statistical Association, 97, 236–244.MathSciNetCrossRef Brannath, W., Posch, M., & Bauer, P. (2002). Recursive combination tests. Journal of the American Statistical Association, 97, 236–244.MathSciNetCrossRef
5.
go back to reference Chang, M. N., Hwang, I. K., & Shih, W. J. (1998). Group sequential designs using both type I and type II error probability spending functions. Communications in Statistics, Theory and Methods, A27(6), 1323–1339. Chang, M. N., Hwang, I. K., & Shih, W. J. (1998). Group sequential designs using both type I and type II error probability spending functions. Communications in Statistics, Theory and Methods, A27(6), 1323–1339.
6.
go back to reference Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, B34, 187–220.MATH Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, B34, 187–220.MATH
7.
go back to reference Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269–276. Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269–276.
8.
go back to reference Denne, J. S. (2001). Sample size recalculation using conditional power. Statistics in Medicine, 20, 2645–2660.CrossRef Denne, J. S. (2001). Sample size recalculation using conditional power. Statistics in Medicine, 20, 2645–2660.CrossRef
9.
go back to reference Desseaux, K., & Porcher, R. (2007). Flexible two-stage design with sample size reassessment for survival trials. Statistics in Medicine, 26(27), 5002–5013. Desseaux, K., & Porcher, R. (2007). Flexible two-stage design with sample size reassessment for survival trials. Statistics in Medicine, 26(27), 5002–5013.
12.
go back to reference Gu, M., & Ying, Z. (1995). Group sequential methods for survival data using partial likelihood score processes with covariate adjustment. Statistica Sinica, 5, 793–804.MathSciNetMATH Gu, M., & Ying, Z. (1995). Group sequential methods for survival data using partial likelihood score processes with covariate adjustment. Statistica Sinica, 5, 793–804.MathSciNetMATH
13.
go back to reference Hwang, I. K., Shih, W. J., & De Cani, J. S. (1990). Group sequential designs using a family of type I error probability spending functions. Statistics in Medicine, 9, 1439–1445.CrossRef Hwang, I. K., Shih, W. J., & De Cani, J. S. (1990). Group sequential designs using a family of type I error probability spending functions. Statistics in Medicine, 9, 1439–1445.CrossRef
14.
go back to reference Irle, S., & Schäfer, H. (2012). Interim design modifications in time-to-event studies. Journal of the American Statistical Association, 107, 341–348.MathSciNetCrossRef Irle, S., & Schäfer, H. (2012). Interim design modifications in time-to-event studies. Journal of the American Statistical Association, 107, 341–348.MathSciNetCrossRef
15.
go back to reference Jahn-Eimermacher, A., & Ingel, K. (2009). Adaptive trial design: A general methodology for censored time to event data. Contemporary Clinical Trials, 30, 171–177.CrossRef Jahn-Eimermacher, A., & Ingel, K. (2009). Adaptive trial design: A general methodology for censored time to event data. Contemporary Clinical Trials, 30, 171–177.CrossRef
16.
go back to reference Jenkins, M., Stone, A., & Jennison, C. (2011). An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoints. Pharmaceutical Statistics, 10(4), 347–356. Jenkins, M., Stone, A., & Jennison, C. (2011). An adaptive seamless phase II/III design for oncology trials with subpopulation selection using correlated survival endpoints. Pharmaceutical Statistics, 10(4), 347–356.
17.
go back to reference Jennison, C., & Turnbull, B. W. (2000). Group sequential methods with applications to clinical trials. London: Chapman and Hall/CRC.MATH Jennison, C., & Turnbull, B. W. (2000). Group sequential methods with applications to clinical trials. London: Chapman and Hall/CRC.MATH
18.
go back to reference Lachin, J. M., & Foulkes, M. A. (1986). Evaluation of sample size and power for analyses of survival with allowance for nonuniform patient entry, losses to follow-up, noncompliance and stratification. Biometrics, 42, 507–519.CrossRef Lachin, J. M., & Foulkes, M. A. (1986). Evaluation of sample size and power for analyses of survival with allowance for nonuniform patient entry, losses to follow-up, noncompliance and stratification. Biometrics, 42, 507–519.CrossRef
19.
go back to reference Lan, K. K. G., & DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials. Biometrika, 70(3), 659–663. Lan, K. K. G., & DeMets, D. L. (1983). Discrete sequential boundaries for clinical trials. Biometrika, 70(3), 659–663.
20.
go back to reference Lan, K. K. G., & DeMets, D. L. (1989). Group sequential procedures: Calendar versus information time. Statistics in Medicine, 8, 1191–1198.CrossRef Lan, K. K. G., & DeMets, D. L. (1989). Group sequential procedures: Calendar versus information time. Statistics in Medicine, 8, 1191–1198.CrossRef
21.
go back to reference Lehmacher, W., & Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials. Biometrics, 55, 1286–1290.CrossRef Lehmacher, W., & Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials. Biometrics, 55, 1286–1290.CrossRef
23.
go back to reference Mehta, C. R., & Pocock, S. J. (2011). Adaptive increase in sample size when interim results are promising: A practical guide with examples. Statistics in Medicine, 30(28), 3267–3284. Mehta, C. R., & Pocock, S. J. (2011). Adaptive increase in sample size when interim results are promising: A practical guide with examples. Statistics in Medicine, 30(28), 3267–3284.
24.
go back to reference Müller, H. H., & Schäfer, H. (2004). A general statistical principle for changing a design any time during the course of a trial. Statistics in Medicine, 23, 2497–2508.CrossRef Müller, H. H., & Schäfer, H. (2004). A general statistical principle for changing a design any time during the course of a trial. Statistics in Medicine, 23, 2497–2508.CrossRef
26.
go back to reference Rubinstein, L. V., Gail, M. H., & Santner, T. J. (1981). Planning the duration of a comparative clinical trial with loss to follow-up and a period of continued observation. Journal of Chronic Diseases, 34, 469–479.CrossRef Rubinstein, L. V., Gail, M. H., & Santner, T. J. (1981). Planning the duration of a comparative clinical trial with loss to follow-up and a period of continued observation. Journal of Chronic Diseases, 34, 469–479.CrossRef
27.
go back to reference Rudser, K. D., & Emerson, S. S. (2008). Implementing type I and type II error spending for two-sided group sequential designs. Contemporary Clinical Trials, 29, 351–358.CrossRef Rudser, K. D., & Emerson, S. S. (2008). Implementing type I and type II error spending for two-sided group sequential designs. Contemporary Clinical Trials, 29, 351–358.CrossRef
28.
go back to reference Schäfer, H., & Müller, H. H. (2001). Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections. Statistics in Medicine, 20, 3741–3751.CrossRef Schäfer, H., & Müller, H. H. (2001). Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections. Statistics in Medicine, 20, 3741–3751.CrossRef
29.
go back to reference Schmidinger, M., & Zielinski, C. C. (2009). Novel agents for renal cell carcinoma require novel selection paradigms to optimise first-line therapy. Cancer Treatment Reviews, 35, 289–296.CrossRef Schmidinger, M., & Zielinski, C. C. (2009). Novel agents for renal cell carcinoma require novel selection paradigms to optimise first-line therapy. Cancer Treatment Reviews, 35, 289–296.CrossRef
31.
go back to reference Schrader, A. J., Olbert, P. J., Hegele, A., Varga, Z., & Hofmann, R. (2008). Metastatic non-clear cell renal cell carcinoma: current therapeutic options. BJU International, 101, 1343–1345.CrossRef Schrader, A. J., Olbert, P. J., Hegele, A., Varga, Z., & Hofmann, R. (2008). Metastatic non-clear cell renal cell carcinoma: current therapeutic options. BJU International, 101, 1343–1345.CrossRef
32.
go back to reference Tsiatis, A. (1981). A large sample study of Cox’s regression model. The Annals of Statistics, 9(1), 93–108. Tsiatis, A. (1981). A large sample study of Cox’s regression model. The Annals of Statistics, 9(1), 93–108.
33.
go back to reference Tsiatis, A., Rosner, G. L., & Tritchler, D. L. (1985). Group sequential tests with censored survival data adjusting for covariates. Biometrika, 72(2), 365–373. Tsiatis, A., Rosner, G. L., & Tritchler, D. L. (1985). Group sequential tests with censored survival data adjusting for covariates. Biometrika, 72(2), 365–373.
34.
go back to reference Tymofyeyev, Y. (2014). A review of available software and capabilities for adaptive designs. In W. He, J. Pinheiro, & O. M. Kuznetsova (Eds.), Practical considerations for adaptive trial design and implementation (pp. 139–155). New York: Springer.CrossRef Tymofyeyev, Y. (2014). A review of available software and capabilities for adaptive designs. In W. He, J. Pinheiro, & O. M. Kuznetsova (Eds.), Practical considerations for adaptive trial design and implementation (pp. 139–155). New York: Springer.CrossRef
35.
go back to reference Wassmer, G. (2006). Planning and analyzing adaptive group sequential survival trials. Biometrical Journal, 48, 714–729.MathSciNetCrossRef Wassmer, G. (2006). Planning and analyzing adaptive group sequential survival trials. Biometrical Journal, 48, 714–729.MathSciNetCrossRef
36.
go back to reference Wunder, C., Kopp-Schneider, A., & Edler, L. (2012). An adaptive group sequential phase II design to compare treatments for survival endpoints in rare patient entities. Journal of Biopharmaceutical Statistics, 22(2), 294–311. Wunder, C., Kopp-Schneider, A., & Edler, L. (2012). An adaptive group sequential phase II design to compare treatments for survival endpoints in rare patient entities. Journal of Biopharmaceutical Statistics, 22(2), 294–311.
Metadata
Title
On the Application of Flexible Designs When Searching for the Better of Two Anticancer Treatments
Authors
Christina Kunz
Lutz Edler
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-34675-1_12

Premium Partner