Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-07-2018 | Issue 3/2019

Neural Processing Letters 3/2019

On the Choice of Inter-Class Distance Maximization Term in Siamese Neural Networks

Journal:
Neural Processing Letters > Issue 3/2019
Author:
Abdulrahman O. Ibraheem
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recent systems from premier research labs, such as Facebook’s and Google’s, employ variants of the basic siamese neural networks (SNNs), a testimony to how SNNs are becoming very important in practical applications. The objective function of an SNN comprises two terms. Whereas there are no issues about the choice of the first term, there appears to be some issues concerning the choice of the second term, along the lines of: 1. apriori boundedness from below; and 2. vanishing gradients. Therefore, in this work, I study four possible candidates for the second term, in order to investigate the roles of apriori boundedness from below, and vanising gradients, on classification accuracy, as well as to, more importantly, from a practical standpoint, elucidate the effects, on classification accuracy, of using different types of second terms in SNNs. My results suggest that neither apriori boundedness nor vanishing gradients are crisp decisive factors governing the performances of the candidate functions. However, results show that, of the four candidates evaluated, a particular candidate features generally superior performance. I therefore recommend this candidate to the community, and this recommendation attains especial importance when taken against a backdrop of another facet of this work’s results which indicates that choosing a wrong objective function could cause classification accuracy to dip by as much as \(17 \%\).

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2019

Neural Processing Letters 3/2019 Go to the issue