Skip to main content
Top
Published in: Wireless Personal Communications 2/2022

11-06-2022

On the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machines

Authors: Remziye Büsra Coruk, Bengisu Yalcinkaya Gokdogan, Mohamed Benzaghta, Ali Kara

Published in: Wireless Personal Communications | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The recognition of modulation schemes in military and civilian applications is a major task for intelligent receiving systems. Various Automatic Modulation Classification (AMC) algorithms have been developed for this purpose in the literature. However, classification with low computational complexity as well as reasonable processing time is still a challenge. In this paper, a feature-based approach along with various classifiers is employed based on statistical features as well as higher-order moments and cumulants. An over-the-air (OTA) recorded dataset consisting of four analog and ten digital modulation schemes are used for testing the proposed method at 0–20 dB SNR. The overall accuracy for quadratic Support Vector Machine (SVM) is found to be as high as 98% at 10 dB. The comparison of the results with other AMC papers published in the literature indicates that the proposed method present higher accuracy, especially for realistic channel induced OTA dataset.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.CrossRef Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Communications, 1(2), 137–156.CrossRef
2.
go back to reference Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41(4), 455–469.CrossRef Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41(4), 455–469.CrossRef
3.
go back to reference Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013, February). An overview of feature-based methods for digital modulation classification. In 2013 1st international conference on communications, signal processing, and their applications (ICCSPA) (pp. 1–6). IEEE. Hazza, A., Shoaib, M., Alshebeili, S. A., & Fahad, A. (2013, February). An overview of feature-based methods for digital modulation classification. In 2013 1st international conference on communications, signal processing, and their applications (ICCSPA) (pp. 1–6). IEEE.
4.
go back to reference Zhang, J., Wang, F., Zhong, Z., & Wang, S. (2018). Continuous phase modulation classification via Baum–Welch algorithm. IEEE Communications Letters, 22(7), 1390–1393.CrossRef Zhang, J., Wang, F., Zhong, Z., & Wang, S. (2018). Continuous phase modulation classification via Baum–Welch algorithm. IEEE Communications Letters, 22(7), 1390–1393.CrossRef
5.
go back to reference Kim, S. J., & Yoon, D. (2016, October). Automatic modulation classification in practical wireless channels. In 2016 International conference on information and communication technology convergence (ICTC) (pp. 915–917). IEEE. Kim, S. J., & Yoon, D. (2016, October). Automatic modulation classification in practical wireless channels. In 2016 International conference on information and communication technology convergence (ICTC) (pp. 915–917). IEEE.
6.
go back to reference Abdelmutalab, A., Assaleh, K., & El-Tarhuni, M. (2016). Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers. Physical Communication, 21, 10–18.CrossRef Abdelmutalab, A., Assaleh, K., & El-Tarhuni, M. (2016). Automatic modulation classification based on high order cumulants and hierarchical polynomial classifiers. Physical Communication, 21, 10–18.CrossRef
8.
go back to reference Jiang, W. H., Tong, F., Dong, Y. Z., & Zhang, G. Q. (2018). Modulation recognition of non-cooperation underwater acoustic communication signals using principal component analysis. Applied Acoustics, 138, 209–215.CrossRef Jiang, W. H., Tong, F., Dong, Y. Z., & Zhang, G. Q. (2018). Modulation recognition of non-cooperation underwater acoustic communication signals using principal component analysis. Applied Acoustics, 138, 209–215.CrossRef
9.
go back to reference Kubankova, A., Kubanek, D., & Prinosil, J. (2011, August). Digital modulation classification based on characteristic features and GentleBoost algorithm. In 2011 34th International conference on telecommunications and signal processing (TSP) (pp. 448–451). IEEE. Kubankova, A., Kubanek, D., & Prinosil, J. (2011, August). Digital modulation classification based on characteristic features and GentleBoost algorithm. In 2011 34th International conference on telecommunications and signal processing (TSP) (pp. 448–451). IEEE.
10.
go back to reference Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.CrossRef Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46(4), 431–436.CrossRef
11.
go back to reference Fucai, Z., Yihua, H., & Shiqi, H. (2008). Classification using wavelet packet decomposition and support vector machine for digital modulations. Journal of Systems Engineering and Electronics, 19(5), 914–918.MATHCrossRef Fucai, Z., Yihua, H., & Shiqi, H. (2008). Classification using wavelet packet decomposition and support vector machine for digital modulations. Journal of Systems Engineering and Electronics, 19(5), 914–918.MATHCrossRef
12.
go back to reference Ali, A. M., Uzundurukan, E., & Kara, A. (2019). Assessment of features and classifiers for Bluetooth RF fingerprinting. IEEE Access, 7, 50524–50535.CrossRef Ali, A. M., Uzundurukan, E., & Kara, A. (2019). Assessment of features and classifiers for Bluetooth RF fingerprinting. IEEE Access, 7, 50524–50535.CrossRef
13.
go back to reference Aghnaiya, A., Ali, A. M., & Kara, A. (2019). Variational mode decomposition-based radio frequency fingerprinting of Bluetooth devices. IEEE Access, 7, 144054–144058.CrossRef Aghnaiya, A., Ali, A. M., & Kara, A. (2019). Variational mode decomposition-based radio frequency fingerprinting of Bluetooth devices. IEEE Access, 7, 144054–144058.CrossRef
14.
go back to reference Gupta, R., Majhi, S., & Dobre, O. A. (2018). Design and implementation of a tree-based blind modulation classification algorithm for multiple-antenna systems. IEEE Transactions on Instrumentation and Measurement, 68(8), 3020–3031.CrossRef Gupta, R., Majhi, S., & Dobre, O. A. (2018). Design and implementation of a tree-based blind modulation classification algorithm for multiple-antenna systems. IEEE Transactions on Instrumentation and Measurement, 68(8), 3020–3031.CrossRef
15.
go back to reference Zhang, Z., Hua, Z., & Liu, Y. (2017). Modulation classification in multipath fading channels using sixth-order cumulants and stacked convolutional auto-encoders. IET Communications, 11(6), 910–915.CrossRef Zhang, Z., Hua, Z., & Liu, Y. (2017). Modulation classification in multipath fading channels using sixth-order cumulants and stacked convolutional auto-encoders. IET Communications, 11(6), 910–915.CrossRef
16.
go back to reference Lee, J. H., Kim, J., Kim, B., Yoon, D., & Choi, J. W. (2017). Robust automatic modulation classification technique for fading channels via deep neural network. Entropy, 19(9), 454.CrossRef Lee, J. H., Kim, J., Kim, B., Yoon, D., & Choi, J. W. (2017). Robust automatic modulation classification technique for fading channels via deep neural network. Entropy, 19(9), 454.CrossRef
17.
go back to reference Gençol, K., Kara, A., & At, N. (2017). Improvements on deinterleaving of radar pulses in dynamically varying signal environments. Digital Signal Processing, 69, 86–93.CrossRef Gençol, K., Kara, A., & At, N. (2017). Improvements on deinterleaving of radar pulses in dynamically varying signal environments. Digital Signal Processing, 69, 86–93.CrossRef
18.
go back to reference Gencol, K., At, N., & Kara, A. (2016). A wavelet-based feature set for recognizing pulse repetition interval modulation patterns. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 3078–3090.CrossRef Gencol, K., At, N., & Kara, A. (2016). A wavelet-based feature set for recognizing pulse repetition interval modulation patterns. Turkish Journal of Electrical Engineering and Computer Sciences, 24(4), 3078–3090.CrossRef
19.
go back to reference Chang, D. C., & Shih, P. K. (2015). Cumulants-based modulation classification technique in multipath fading channels. IET Communications, 9(6), 828–835.CrossRef Chang, D. C., & Shih, P. K. (2015). Cumulants-based modulation classification technique in multipath fading channels. IET Communications, 9(6), 828–835.CrossRef
20.
go back to reference Marey, M., & Dobre, O. A. (2014). Blind modulation classification algorithm for single and multiple-antenna systems over frequency-selective channels. IEEE Signal Processing Letters, 21(9), 1098–1102.CrossRef Marey, M., & Dobre, O. A. (2014). Blind modulation classification algorithm for single and multiple-antenna systems over frequency-selective channels. IEEE Signal Processing Letters, 21(9), 1098–1102.CrossRef
21.
go back to reference Ebrahimzadeh, A., & Ghazalian, R. (2011). Blind digital modulation classification in software radio using the optimized classifier and feature subset selection. Engineering Applications of Artificial Intelligence, 24(1), 50–59.CrossRef Ebrahimzadeh, A., & Ghazalian, R. (2011). Blind digital modulation classification in software radio using the optimized classifier and feature subset selection. Engineering Applications of Artificial Intelligence, 24(1), 50–59.CrossRef
22.
go back to reference Zhu, Z., & Nandi, A. K. (2015). Automatic modulation classification: Principles, algorithms and applications. Wiley. Zhu, Z., & Nandi, A. K. (2015). Automatic modulation classification: Principles, algorithms and applications. Wiley.
23.
go back to reference Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning: Algorithms and applications. CRC Press. Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning: Algorithms and applications. CRC Press.
25.
go back to reference O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.CrossRef O’Shea, T. J., Roy, T., & Clancy, T. C. (2018). Over-the-air deep learning based radio signal classification. IEEE Journal of Selected Topics in Signal Processing, 12(1), 168–179.CrossRef
26.
go back to reference O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef O’Shea, T., & Hoydis, J. (2017). An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking, 3(4), 563–575.CrossRef
27.
go back to reference Zhang, X., Sun, J., & Zhang, X. (2020). Automatic modulation classification based on novel feature extraction algorithms. IEEE Access, 8, 16362–16371.CrossRef Zhang, X., Sun, J., & Zhang, X. (2020). Automatic modulation classification based on novel feature extraction algorithms. IEEE Access, 8, 16362–16371.CrossRef
28.
go back to reference Shuli, D., Zhipeng, L., & Linfeng, Z. (2020, June). A modulation recognition algorithm based on cyclic spectrum and SVM classification. In 2020 IEEE 4th information technology, networking, electronic and automation control conference (ITNEC) (Vol. 1, pp. 2123–2127). IEEE. Shuli, D., Zhipeng, L., & Linfeng, Z. (2020, June). A modulation recognition algorithm based on cyclic spectrum and SVM classification. In 2020 IEEE 4th information technology, networking, electronic and automation control conference (ITNEC) (Vol. 1, pp. 2123–2127). IEEE.
29.
go back to reference Chu, P., Xie, L., Dai, C., & Chen, Y. (2021). Automatic modulation recognition for secondary modulated signals. IEEE Wireless Communications Letters, 10(5), 962–965.CrossRef Chu, P., Xie, L., Dai, C., & Chen, Y. (2021). Automatic modulation recognition for secondary modulated signals. IEEE Wireless Communications Letters, 10(5), 962–965.CrossRef
30.
go back to reference Seddighi, Z., Ahmadzadeh, M. R., & Taban, M. R. (2020). Radar signals classification using energy–time–frequency distribution features. IET Radar, Sonar and Navigation, 14(5), 707–715.CrossRef Seddighi, Z., Ahmadzadeh, M. R., & Taban, M. R. (2020). Radar signals classification using energy–time–frequency distribution features. IET Radar, Sonar and Navigation, 14(5), 707–715.CrossRef
31.
go back to reference Jdid, B., Lim, W. H., Dayoub, I., Hassan, K., & Juhari, M. R. B. M. (2021). Robust automatic modulation recognition through joint contribution of hand-crafted and contextual features. IEEE Access, 9, 104530–104546. Jdid, B., Lim, W. H., Dayoub, I., Hassan, K., & Juhari, M. R. B. M. (2021). Robust automatic modulation recognition through joint contribution of hand-crafted and contextual features. IEEE Access, 9, 104530–104546.
33.
go back to reference Klein, R. W., Temple, M. A., & Mendenhall, M. J. (2009). Application of wavelet-based RF fingerprinting to enhance wireless network security. Journal of Communications and Networks, 11(6), 544–555.CrossRef Klein, R. W., Temple, M. A., & Mendenhall, M. J. (2009). Application of wavelet-based RF fingerprinting to enhance wireless network security. Journal of Communications and Networks, 11(6), 544–555.CrossRef
34.
go back to reference Geisinger, N. P. (2010). Classification of digital modulation schemes using linear and nonlinear classifiers. Naval Postgraduate School. Geisinger, N. P. (2010). Classification of digital modulation schemes using linear and nonlinear classifiers. Naval Postgraduate School.
35.
go back to reference Zhou, X., Wu, Y., & Yang, B. (2010). Signal classification method based on support vector machine and high-order cumulants. Wireless Sensor Network, 2(1), 48–52.CrossRef Zhou, X., Wu, Y., & Yang, B. (2010). Signal classification method based on support vector machine and high-order cumulants. Wireless Sensor Network, 2(1), 48–52.CrossRef
36.
go back to reference Kim, N., Kehtarnavaz, N., Yeary, M. B., & Thornton, S. (2003). DSP-based hierarchical neural network modulation signal classification. IEEE Transactions on Neural Networks, 14(5), 1065–1071.CrossRef Kim, N., Kehtarnavaz, N., Yeary, M. B., & Thornton, S. (2003). DSP-based hierarchical neural network modulation signal classification. IEEE Transactions on Neural Networks, 14(5), 1065–1071.CrossRef
37.
go back to reference Zhu, Z., & Nandi, A. K. (2014). Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communications, 13(8), 4483–4494.CrossRef Zhu, Z., & Nandi, A. K. (2014). Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communications, 13(8), 4483–4494.CrossRef
38.
go back to reference Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of genetic programming and KNN. IEEE Transactions on Wireless Communications, 11(8), 2742–2750.
39.
go back to reference Wong, M. D., Ting, S. K., & Nandi, A. K. (2008, December). Naive Bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants. In 2008 2nd International conference on signal processing and communication systems (pp. 1–5). IEEE. Wong, M. D., Ting, S. K., & Nandi, A. K. (2008, December). Naive Bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants. In 2008 2nd International conference on signal processing and communication systems (pp. 1–5). IEEE.
40.
go back to reference Alharbi, H., Mobien, S., Alshebeili, S., & Alturki, F. (2013). Automatic modulation classification of digital modulations in presence of HF noise. EURASIP Journal on Advances in Signal Processing, 2012, 238.CrossRef Alharbi, H., Mobien, S., Alshebeili, S., & Alturki, F. (2013). Automatic modulation classification of digital modulations in presence of HF noise. EURASIP Journal on Advances in Signal Processing, 2012, 238.CrossRef
41.
go back to reference O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016, September). Convolutional radio modulation recognition networks. In International conference on engineering applications of neural networks (pp. 213–226). Springer. O’Shea, T. J., Corgan, J., & Clancy, T. C. (2016, September). Convolutional radio modulation recognition networks. In International conference on engineering applications of neural networks (pp. 213–226). Springer.
42.
go back to reference Wu, Z., Zhou, S., Yin, Z., Ma, B., & Yang, Z. (2017). Robust automatic modulation classification under varying noise conditions. IEEE Access, 5, 19733–19741.CrossRef Wu, Z., Zhou, S., Yin, Z., Ma, B., & Yang, Z. (2017). Robust automatic modulation classification under varying noise conditions. IEEE Access, 5, 19733–19741.CrossRef
43.
go back to reference Subbarao, M. V., & Samundiswary, P. (2020). Performance analysis of modulation recognition in multipath fading channels using pattern recognition classifiers. Wireless Personal Communications, 115(1), 129–151.CrossRef Subbarao, M. V., & Samundiswary, P. (2020). Performance analysis of modulation recognition in multipath fading channels using pattern recognition classifiers. Wireless Personal Communications, 115(1), 129–151.CrossRef
44.
go back to reference Baris, B., Cek, M. E., & Kuntalp, D. G. (2021). Modulation classification of MFSK modulated signals using spectral centroid. Wireless Personal Communications, 119, 1–13.CrossRef Baris, B., Cek, M. E., & Kuntalp, D. G. (2021). Modulation classification of MFSK modulated signals using spectral centroid. Wireless Personal Communications, 119, 1–13.CrossRef
Metadata
Title
On the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machines
Authors
Remziye Büsra Coruk
Bengisu Yalcinkaya Gokdogan
Mohamed Benzaghta
Ali Kara
Publication date
11-06-2022
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2022
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09795-8

Other articles of this Issue 2/2022

Wireless Personal Communications 2/2022 Go to the issue