Skip to main content
Top

2018 | OriginalPaper | Chapter

On the Convergence of the h-p Finite Element Method for Solving Boundary Value Problems in Physical Geodesy

Authors : David Mráz, Milan Bořík, Jaroslav Novotný

Published in: International Symposium on Earth and Environmental Sciences for Future Generations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A geopotential model of the Earth is usually calculated using the Stokes coefficients. As computational power has increased, research is focusing more on new ways of gravity field modelling. The objective of this work is to study an application of the h-p finite element method for solving boundary value problems in physical geodesy. For the purpose of studying this method, we have formulated model boundary value problems with different boundary conditions. The algorithm for solving these test problems was designed and was subsequently implemented by the program. We derived a weak formulation for each model boundary value problem and also the corresponding finite element discretization. We used isoparametric reference elements with linear and quadratic shape functions. The authors present the application of the h and p methodologies for increasing the rate of convergence of our solution, discuss mesh generation for large domains, and also solve the model boundary value problem, which is similar to the geodetic boundary value problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Babuška I, Dorr MR (1981) Error estimates for the combined h and p version of finite element method. Numer Math 37:252–277 Babuška I, Dorr MR (1981) Error estimates for the combined h and p version of finite element method. Numer Math 37:252–277
go back to reference Babuška I, Suri M (1990) The p- and h-p versions of the finite element method an overview. In: Canuto C, Quarteroni A (eds) Spectral and high order methods for partial differential equations. North-Holland, Amsterdam, pp 5–26 Babuška I, Suri M (1990) The p- and h-p versions of the finite element method an overview. In: Canuto C, Quarteroni A (eds) Spectral and high order methods for partial differential equations. North-Holland, Amsterdam, pp 5–26
go back to reference Babuška I, Szabo B (1982) On the rates of convergence of the finite element method. Int J Numer Methods Eng 18:323–341. doi:10.1002/nme.1620180302 Babuška I, Szabo B (1982) On the rates of convergence of the finite element method. Int J Numer Methods Eng 18:323–341. doi:10.1002/nme.1620180302
go back to reference Bathe K (1999) Finite element procedures. Prentice Hall, Prentice Bathe K (1999) Finite element procedures. Prentice Hall, Prentice
go back to reference Čunderlík R, Mikula K, Mojzeš M (2008) Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geod 82(1):15–29 Čunderlík R, Mikula K, Mojzeš M (2008) Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geod 82(1):15–29
go back to reference Ergatoudis J, Irons B, Zienkiewicz O (1968) Curved, isoparametric, quadrilateral elements for finite element analysis. Int J Solids Struct 4:31–42 Ergatoudis J, Irons B, Zienkiewicz O (1968) Curved, isoparametric, quadrilateral elements for finite element analysis. Int J Solids Struct 4:31–42
go back to reference Fašková Z, Čunderlík, Mikula K (2010) Finite element method for solving geodetic boundary value problems. J Geod 84(2):135–144 Fašková Z, Čunderlík, Mikula K (2010) Finite element method for solving geodetic boundary value problems. J Geod 84(2):135–144
go back to reference Grafarend E (1989) The geoid and the gravimetric boundary value problem, Report No 18. The Royal Institute of Technology (Dep of Geod), Stockholm Grafarend E (1989) The geoid and the gravimetric boundary value problem, Report No 18. The Royal Institute of Technology (Dep of Geod), Stockholm
go back to reference Grafarend E, Niemeier W (1971) The free nonlinear boundary value problem of physical geodesy. Bull Geod 101:243–261 Grafarend E, Niemeier W (1971) The free nonlinear boundary value problem of physical geodesy. Bull Geod 101:243–261
go back to reference Grafarend E, Heck B, Knickmeyer E (1985) The free versus fixed geodetic boundary value problem for different combinations of geodetic observables. Bull Geod 59(1):11–32 Grafarend E, Heck B, Knickmeyer E (1985) The free versus fixed geodetic boundary value problem for different combinations of geodetic observables. Bull Geod 59(1):11–32
go back to reference Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, New York Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, New York
go back to reference Holota P (2000) Direct methods in physical geodesy. In: Schwarz K-P (ed) Geodesy beyond 2000 - the challenges of the first decade. IAG general assembly, Birmingham, July 19–30, 1999, IAG symposia, vol 121. Springer, Berlin, pp 163–170 Holota P (2000) Direct methods in physical geodesy. In: Schwarz K-P (ed) Geodesy beyond 2000 - the challenges of the first decade. IAG general assembly, Birmingham, July 19–30, 1999, IAG symposia, vol 121. Springer, Berlin, pp 163–170
go back to reference Holota P (2001) Variational methods in geoid determination and function bases. Phys Chem Earth Solid Earth Geod 24(1):3–14 Holota P (2001) Variational methods in geoid determination and function bases. Phys Chem Earth Solid Earth Geod 24(1):3–14
go back to reference Holota P (2005) Neumann’s boundary-value problem in studies on Earth gravity field: weak solution. In: Holota P, Slaboch V (eds) 50 years of Research Institute of Geodesy, Topography and Cartography, Prague, vol 50, No 36. Research Institute of Geodesy, Topography and Cartography, Prague, pp 49–69 Holota P (2005) Neumann’s boundary-value problem in studies on Earth gravity field: weak solution. In: Holota P, Slaboch V (eds) 50 years of Research Institute of Geodesy, Topography and Cartography, Prague, vol 50, No 36. Research Institute of Geodesy, Topography and Cartography, Prague, pp 49–69
go back to reference Holota P, Nesvadba O (2007) Model refinements and numerical solutions of weakly formulated boundary-value problems in physical geodesy. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium of theoretical and computational geodesy, Wuhan, 29 May–2 June, 2006. IAG symposia, vol 132. Springer, Berlin, pp 314–320 Holota P, Nesvadba O (2007) Model refinements and numerical solutions of weakly formulated boundary-value problems in physical geodesy. In: Xu P, Liu J, Dermanis A (eds) VI Hotine-Marussi symposium of theoretical and computational geodesy, Wuhan, 29 May–2 June, 2006. IAG symposia, vol 132. Springer, Berlin, pp 314–320
go back to reference Heck B (1989) On the non-linear geodetic boundary value problem for a fixed boundary surface. Bull Geod 63(1):57–67 Heck B (1989) On the non-linear geodetic boundary value problem for a fixed boundary surface. Bull Geod 63(1):57–67
go back to reference Klees R (1995) Boundary value problems and approximation of integral equations by finite elements. Manuscr Geodaet 20:345–361 Klees R (1995) Boundary value problems and approximation of integral equations by finite elements. Manuscr Geodaet 20:345–361
go back to reference Klees R, van Gelderen M, Lage C, Schwab C (2001) Fast numerical solution of the linearized Molodensky problem. J Geodesy 75:349–362 Klees R, van Gelderen M, Lage C, Schwab C (2001) Fast numerical solution of the linearized Molodensky problem. J Geodesy 75:349–362
go back to reference Meissl P (1981) The use of finite elements in physical geodesy. Report 313, Geodetic Science and Surveying, The Ohio State University Meissl P (1981) The use of finite elements in physical geodesy. Report 313, Geodetic Science and Surveying, The Ohio State University
go back to reference Minarechová Z, Macák M, Čunderlík R, Mikula K (2015) High-resolution global gravity field modelling by the finite volume method. Stud Geophys Geod 59(1):1–20 Minarechová Z, Macák M, Čunderlík R, Mikula K (2015) High-resolution global gravity field modelling by the finite volume method. Stud Geophys Geod 59(1):1–20
go back to reference Nesvadba O, Holota P, Klees R (2007) A direct method and its numerical interpretation in the determination of the Earth’s gravity field from terrestrial data. In: Tregoning P, Rizos C (eds) Dynamic planet. International association of geodesy symposia, vol 130. Springer, Heidelberg, pp 370–376 Nesvadba O, Holota P, Klees R (2007) A direct method and its numerical interpretation in the determination of the Earth’s gravity field from terrestrial data. In: Tregoning P, Rizos C (eds) Dynamic planet. International association of geodesy symposia, vol 130. Springer, Heidelberg, pp 370–376
go back to reference Rektorys K (1980) Variational methods in mathematics, science and engineering. D. Reidel Publishing Company, Dordrecht Rektorys K (1980) Variational methods in mathematics, science and engineering. D. Reidel Publishing Company, Dordrecht
go back to reference Sansò F, Sideris M (2013) Geoid determination - theory and methods. Lecture notes in earth system sciences. Springer, Heidelberg Sansò F, Sideris M (2013) Geoid determination - theory and methods. Lecture notes in earth system sciences. Springer, Heidelberg
go back to reference Shaofeng B, Dingbo C (1991) The finite element method for the geodetic boundary value problem. Manuscr Geod 16:353–359 Shaofeng B, Dingbo C (1991) The finite element method for the geodetic boundary value problem. Manuscr Geod 16:353–359
go back to reference Šprlák M, Fašková Z, Mikula K (2011) On the application of the coupled finite-infinite element method to the geodetic boundary value problem. Stud Geophys Geod 55:479–487 Šprlák M, Fašková Z, Mikula K (2011) On the application of the coupled finite-infinite element method to the geodetic boundary value problem. Stud Geophys Geod 55:479–487
Metadata
Title
On the Convergence of the h-p Finite Element Method for Solving Boundary Value Problems in Physical Geodesy
Authors
David Mráz
Milan Bořík
Jaroslav Novotný
Copyright Year
2018
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/1345_2016_237