Skip to main content
Top
Published in: Rheologica Acta 5-6/2011

01-06-2011 | Original Contribution

On the determination of elastic properties of composites of polycarbonate and multi-wall carbon nanotubes in the melt

Authors: Ulrich Alexander Handge, Rico Zeiler, Dirk J. Dijkstra, Helmut Meyer, Volker Altstädt

Published in: Rheologica Acta | Issue 5-6/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the elastic properties of melts of polycarbonate (PC)/multi-wall carbon nanotubes (MWCNT) composites were studied by means of rotational and capillary rheometry. Linear viscoelastic shear oscillations combined with simultaneous electrical measurements, creep recovery experiments in shear and extrudate swell measurements were performed. The application of the fractional Zener model for the phenomenological description of the viscoelastic properties of PC/MWCNT composites in the linear regime is discussed. The modulus of the spring of the fractional Zener model is a measure of elasticity and increases with carbon nanotubes concentration. The results of creep recovery experiments reveal that the microstructure strongly influenced the viscosity and the reversible deformation of the nanocomposites. Below the rheological percolation threshold, agglomeration of carbon nanotubes generally led to an increase of the reversible deformation up to a maximum value. Above the rheological percolation threshold, a larger concentration of carbon nanotubes caused a decrease of the recoverable deformation. As revealed by capillary rheometry, the extrudate swell of the PC/MWCNT composites at shear rates above 100 s − 1 was lower than the extrudate swell of neat polycarbonate which indicates the decrease of reversible deformation caused by the addition of MWCNT in capillary flows (large stress regime). The experimental data are discussed in the context of the current understanding of the rheological properties and the microstructure of polymer composites with carbon nanotubes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48(9):943–959CrossRef Abbasi S, Carreau PJ, Derdouri A, Moan M (2009) Rheological properties and percolation in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheol Acta 48(9):943–959CrossRef
go back to reference Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Electrical conductivity recovery in carbon nanotube-polymer composites after transient shear. Phys Status Solidi B Basic Res 244(11):4223–4226CrossRef Alig I, Skipa T, Engel M, Lellinger D, Pegel S, Pötschke P (2007) Electrical conductivity recovery in carbon nanotube-polymer composites after transient shear. Phys Status Solidi B Basic Res 244(11):4223–4226CrossRef
go back to reference Alig I, Lellinger D, Engel M, Skipa T, Pötschke P (2008a) Destruction and formation of a conductive carbon nanotube network in polymer melts: in-line experiments. Polymer 49(7):1902–1909CrossRef Alig I, Lellinger D, Engel M, Skipa T, Pötschke P (2008a) Destruction and formation of a conductive carbon nanotube network in polymer melts: in-line experiments. Polymer 49(7):1902–1909CrossRef
go back to reference Alig I, Skipa T, Lellinger D, Pötschke P (2008b) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49(16):3524–3532CrossRef Alig I, Skipa T, Lellinger D, Pötschke P (2008b) Destruction and formation of a carbon nanotube network in polymer melts: rheology and conductivity spectroscopy. Polymer 49(16):3524–3532CrossRef
go back to reference Bangarusampath DS, Ruckdäschel H, Altstädt V, Sandler JKW, Garray D, Shaffer MSP (2009) Melt rheology of carbon nanofibre-reinforced poly(ether ketone) under shear and elongational flow. Chem Phys Lett 482(1–3):105–109CrossRef Bangarusampath DS, Ruckdäschel H, Altstädt V, Sandler JKW, Garray D, Shaffer MSP (2009) Melt rheology of carbon nanofibre-reinforced poly(ether ketone) under shear and elongational flow. Chem Phys Lett 482(1–3):105–109CrossRef
go back to reference Bangarusampath DS, Ruckdäschel H, Altstädt V, Sandler JKW, Garray D, Shaffer MSP (2009) Rheology and properties of melt-processed poly(ether ketone)/multiwall carbon nanotube composites. Polymer 50(24):5803–5811CrossRef Bangarusampath DS, Ruckdäschel H, Altstädt V, Sandler JKW, Garray D, Shaffer MSP (2009) Rheology and properties of melt-processed poly(ether ketone)/multiwall carbon nanotube composites. Polymer 50(24):5803–5811CrossRef
go back to reference Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High-performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Fun Mater 14(8):791–798CrossRef Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High-performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Fun Mater 14(8):791–798CrossRef
go back to reference Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652CrossRef Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652CrossRef
go back to reference Dijkstra DJ, Cirstea M, Nakamura N (2010) The orientational behavior of multiwall carbon nanotubes in polycarbonate in simple shear flow. Rheol Acta 49(7):769–780CrossRef Dijkstra DJ, Cirstea M, Nakamura N (2010) The orientational behavior of multiwall carbon nanotubes in polycarbonate in simple shear flow. Rheol Acta 49(7):769–780CrossRef
go back to reference Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055CrossRef Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055CrossRef
go back to reference Friedrich C (1993) Mechanical stress relaxation in polymers: fractional integral model versus fractional differential model. J Non-Newtonian Fluid Mech 46:307–314CrossRef Friedrich C (1993) Mechanical stress relaxation in polymers: fractional integral model versus fractional differential model. J Non-Newtonian Fluid Mech 46:307–314CrossRef
go back to reference Handge UA, Pötschke P (2007) Deformation and orientation of carbon nanotubes during shear and elognation in the melt. Rheol Acta 46(6):889–898CrossRef Handge UA, Pötschke P (2007) Deformation and orientation of carbon nanotubes during shear and elognation in the melt. Rheol Acta 46(6):889–898CrossRef
go back to reference Hepperle J, Rainer T, Dijkstra D, Cueper T (2009) Leitfähigkeitsmessvorrichtung. Gebrauchsmusterschrift DE 20 2007 018 634 U1 Hepperle J, Rainer T, Dijkstra D, Cueper T (2009) Leitfähigkeitsmessvorrichtung. Gebrauchsmusterschrift DE 20 2007 018 634 U1
go back to reference Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential-equations or viscoelastic behavior. Rheol Acta 33(3):210–219CrossRef Heymans N, Bauwens JC (1994) Fractal rheological models and fractional differential-equations or viscoelastic behavior. Rheol Acta 33(3):210–219CrossRef
go back to reference Hobbie EK, Wang H, Kim H, Lin-Gibson S, Grulke EA (2003) Orientation of carbon nanotubes in a sheared polymer melt. Phys Fluids 15(5):1196–1202CrossRef Hobbie EK, Wang H, Kim H, Lin-Gibson S, Grulke EA (2003) Orientation of carbon nanotubes in a sheared polymer melt. Phys Fluids 15(5):1196–1202CrossRef
go back to reference Hobbie EK, Fry DJ (2007) Rheology of concentrated carbon nanotube suspensions. J Chem Phys 126(12):124907CrossRef Hobbie EK, Fry DJ (2007) Rheology of concentrated carbon nanotube suspensions. J Chem Phys 126(12):124907CrossRef
go back to reference Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):168102-1–168102-4CrossRef Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):168102-1–168102-4CrossRef
go back to reference Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube-filled polymer materials Nat Mater 3(8):564–568CrossRef Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube-filled polymer materials Nat Mater 3(8):564–568CrossRef
go back to reference Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43(26):7483–7491 Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43(26):7483–7491
go back to reference Kirchberger A, Münstedt H (2010) Droplet deformation under extensional flow in immiscible and partially miscible polymer blends based on poly(styrene-co-acrylonitrile). J Rheol 54(3):687–704CrossRef Kirchberger A, Münstedt H (2010) Droplet deformation under extensional flow in immiscible and partially miscible polymer blends based on poly(styrene-co-acrylonitrile). J Rheol 54(3):687–704CrossRef
go back to reference Metzler R, Schick W, Kilian HG, Nonnenmacher TF (1995) Relaxation in filled polymers: a fractional calculus approach. J Chem Phys 103(16):7180–7186CrossRef Metzler R, Schick W, Kilian HG, Nonnenmacher TF (1995) Relaxation in filled polymers: a fractional calculus approach. J Chem Phys 103(16):7180–7186CrossRef
go back to reference Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35(23):8825–8830CrossRef Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35(23):8825–8830CrossRef
go back to reference Moreira L, Fulchiron R, Seytre G, Dubois P, Cassagnau P (2010) Aggregation of carbon nanotubes in semidilute suspension. Macromolecules 43(3):1467–1472CrossRef Moreira L, Fulchiron R, Seytre G, Dubois P, Cassagnau P (2010) Aggregation of carbon nanotubes in semidilute suspension. Macromolecules 43(3):1467–1472CrossRef
go back to reference Münstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783CrossRef Münstedt H, Katsikis N, Kaschta J (2008) Rheological properties of poly(methyl methacrylate)/nanoclay composites as investigated by creep recovery in shear. Macromolecules 41(24):9777–9783CrossRef
go back to reference Münstedt H, Köppl T, Triebel C (2010) Viscous and elastic properties of poly(methyl methacrylate) melts filled with silica nanoparticles. Polymer 51(1):185–191CrossRef Münstedt H, Köppl T, Triebel C (2010) Viscous and elastic properties of poly(methyl methacrylate) melts filled with silica nanoparticles. Polymer 51(1):185–191CrossRef
go back to reference Okamoto K, Münstedt H (2008) Recoverable strains and retardation times of monodisperse suspensions of silicon dioxide spheres in poly(dimethylsiloxane). Rheol Acta 47(8):873–881CrossRef Okamoto K, Münstedt H (2008) Recoverable strains and retardation times of monodisperse suspensions of silicon dioxide spheres in poly(dimethylsiloxane). Rheol Acta 47(8):873–881CrossRef
go back to reference Palza H, Reznik B, Kappes M, Hennrich F, Naue IFC, Wilhelm M (2010) Characterization of melt flow instabilities in polyethylene/carbon nanotube composites. Polymer 51(16):3753–3761CrossRef Palza H, Reznik B, Kappes M, Hennrich F, Naue IFC, Wilhelm M (2010) Characterization of melt flow instabilities in polyethylene/carbon nanotube composites. Polymer 51(16):3753–3761CrossRef
go back to reference Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255CrossRef Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43(11):3247–3255CrossRef
go back to reference Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger L (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870CrossRef Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger L (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870CrossRef
go back to reference Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol 50(5):599– 610CrossRef Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol 50(5):599– 610CrossRef
go back to reference Resch JA, Stadler FJ, Kaschta J, Münstedt H (2009) Temperature dependence of the linear steady-state shear compliance of linear and long-chain branched polyethylenes. Macromolecules 42(15):5676–5683CrossRef Resch JA, Stadler FJ, Kaschta J, Münstedt H (2009) Temperature dependence of the linear steady-state shear compliance of linear and long-chain branched polyethylenes. Macromolecules 42(15):5676–5683CrossRef
go back to reference Richter S, Saphiannikova M, Jehnichen D, Bierdel M, Heinrich G (2009) Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. eXPRESS Polym Lett 3:753–768CrossRef Richter S, Saphiannikova M, Jehnichen D, Bierdel M, Heinrich G (2009) Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. eXPRESS Polym Lett 3:753–768CrossRef
go back to reference Richter S, Saphiannikova M, Stöckelhuber KW, Heinrich G (2010) Jamming in filled polymer systems. Macromol Symp 291–292:193–201CrossRef Richter S, Saphiannikova M, Stöckelhuber KW, Heinrich G (2010) Jamming in filled polymer systems. Macromol Symp 291–292:193–201CrossRef
go back to reference Sailer C, Handge UA (2008) Reactive blending of polyamide 6 and styrene-acrylonitrile copolymer: influence of blend composition and compatibilizer concentration on morphology and rheology. Macromolecules 41(12):4258–4267CrossRef Sailer C, Handge UA (2008) Reactive blending of polyamide 6 and styrene-acrylonitrile copolymer: influence of blend composition and compatibilizer concentration on morphology and rheology. Macromolecules 41(12):4258–4267CrossRef
go back to reference Schiessel H, Blumen A (1993) Hierarchical analogs to fractional relaxation equations. J Phys A Math Gen 26(19):5057–5069CrossRef Schiessel H, Blumen A (1993) Hierarchical analogs to fractional relaxation equations. J Phys A Math Gen 26(19):5057–5069CrossRef
go back to reference Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A Math Gen 28(23):6567– 6584CrossRef Schiessel H, Metzler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A Math Gen 28(23):6567– 6584CrossRef
go back to reference Schmidt M, Münstedt H (2002) On the elastic properties of model suspensions as investigated by creep recovery experiments in shear. Rheol Acta 41(3):205–210CrossRef Schmidt M, Münstedt H (2002) On the elastic properties of model suspensions as investigated by creep recovery experiments in shear. Rheol Acta 41(3):205–210CrossRef
go back to reference Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I (2010) Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates. Polymer 51(1):201–210CrossRef Skipa T, Lellinger D, Böhm W, Saphiannikova M, Alig I (2010) Influence of shear deformation on carbon nanotube networks in polycarbonate melts: Interplay between build-up and destruction of agglomerates. Polymer 51(1):201–210CrossRef
go back to reference Starý Z, Münstedt H (2008) Morphology development in PS/LLDPE blend during and after elongational deformation. J Polym Sci Part B: Polym Phys 46(1):16–27CrossRef Starý Z, Münstedt H (2008) Morphology development in PS/LLDPE blend during and after elongational deformation. J Polym Sci Part B: Polym Phys 46(1):16–27CrossRef
go back to reference Starý Z, Machui F, Münstedt H (2010) Elongational creep experiments—a new method for investigations of morphology development in polymer blends. Polymer 51(16):3744–3752CrossRef Starý Z, Machui F, Münstedt H (2010) Elongational creep experiments—a new method for investigations of morphology development in polymer blends. Polymer 51(16):3744–3752CrossRef
go back to reference Starý Z, Musialek M, Münstedt H (2011) Shape recovery versus breakup of deformed droplets in a polymer blend after uniaxial extension. Macromol Mater Eng 296:414–422CrossRef Starý Z, Musialek M, Münstedt H (2011) Shape recovery versus breakup of deformed droplets in a polymer blend after uniaxial extension. Macromol Mater Eng 296:414–422CrossRef
go back to reference Triebel C, Kaschta J, Katsikis N, Münstedt H, Funck A, Kaminsky W (2008) Simultaneous determination of electrical and rheological properties of polypropylene filled with carbon nanotubes. AIP Conf Proc 1027:66–68CrossRef Triebel C, Kaschta J, Katsikis N, Münstedt H, Funck A, Kaminsky W (2008) Simultaneous determination of electrical and rheological properties of polypropylene filled with carbon nanotubes. AIP Conf Proc 1027:66–68CrossRef
go back to reference Triebel C, Katsikis N, Stará H, Münstedt H (2010) Investigations on the quality of dispersion of nanofillers in poly(methyl methacrylate) composites by creep-recovery experiments. J Rheol 54(2):407–420CrossRef Triebel C, Katsikis N, Stará H, Münstedt H (2010) Investigations on the quality of dispersion of nanofillers in poly(methyl methacrylate) composites by creep-recovery experiments. J Rheol 54(2):407–420CrossRef
go back to reference Wolff F, Resch JA, Kaschta J, Münstedt H (2010) Comparison of viscous and elastic properties of polyolefin melts in shear and elongation. Rheol Acta 49(1):95–103CrossRef Wolff F, Resch JA, Kaschta J, Münstedt H (2010) Comparison of viscous and elastic properties of polyolefin melts in shear and elongation. Rheol Acta 49(1):95–103CrossRef
go back to reference Zeiler R, Handge UA, Dijkstra DJ, Meyer H, Altstädt V (2011) Influence of molar mass and temperature on the dynamics of network formation in polycarbonate/carbon nanotubes composites in oscillatory shear flows. Polymer 52(2):430–442CrossRef Zeiler R, Handge UA, Dijkstra DJ, Meyer H, Altstädt V (2011) Influence of molar mass and temperature on the dynamics of network formation in polycarbonate/carbon nanotubes composites in oscillatory shear flows. Polymer 52(2):430–442CrossRef
go back to reference Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prep ared by melt processing technique. Carbon 44(4):778–785CrossRef Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra PJ (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prep ared by melt processing technique. Carbon 44(4):778–785CrossRef
Metadata
Title
On the determination of elastic properties of composites of polycarbonate and multi-wall carbon nanotubes in the melt
Authors
Ulrich Alexander Handge
Rico Zeiler
Dirk J. Dijkstra
Helmut Meyer
Volker Altstädt
Publication date
01-06-2011
Publisher
Springer-Verlag
Published in
Rheologica Acta / Issue 5-6/2011
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-011-0558-x

Other articles of this Issue 5-6/2011

Rheologica Acta 5-6/2011 Go to the issue

Premium Partners