Skip to main content
Top
Published in: Mathematics and Financial Economics 3/2020

24-02-2020

On the dynamic representation of some time-inconsistent risk measures in a Brownian filtration

Authors: Julio Backhoff-Veraguas, Ludovic Tangpi

Published in: Mathematics and Financial Economics | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is well-known from the work of Kupper and Schachermayer that most law-invariant risk measures are not time-consistent, and thus do not admit dynamic representations as backward stochastic differential equations. In this work we show that in a Brownian filtration the “Optimized Certainty Equivalent” risk measures of Ben-Tal and Teboulle can be computed through PDE techniques, i.e. dynamically. This can be seen as a substitute of sorts whenever they lack time consistency, and covers the cases of conditional value-at-risk and monotone mean-variance. Our method consists of focusing on the convex dual representation, which suggests an expression of the risk measure as the value of a stochastic control problem on an extended the state space. With this we can obtain a dynamic programming principle and use stochastic control techniques, along with the theory of viscosity solutions, which we must adapt to cover the present singular situation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
In fact, the conditional value-at-risk (also known as expected shortfall) has been praised, and its adoption recommended, by the Basel III Committee in the following terms [34, p. 18]:
“... the current framework’s reliance on VaR (value-at-risk) as a quantitative risk metric raises a number of issues, most notably the inability of the measure to capture the “tail risk” of the loss distribution. The Committee has therefore decided to use an expected shortfall (ES) measure for the internal models -based approach and will determine the risk weights for the revised standardised approach using an ES methodology...”
 
2
We denote by \(l^*\) the convex conjugate of l.
 
3
As pointed out by an anonymous referee, in some cases the upper lateral boundary condition may be expensive to obtain, since it involves an expected value. However, in the situation when \(\text {dom}(l^*)=[0,\infty )\), this boundary condition disappears and only the lower lateral boundary condition remains. The latter takes the form \(V(t,y,0)=-l^*(z)\) and is hence explicit.
 
4
\(\rho (X+ c) = \rho (X) +c\) for all \(X \in L^\infty ({{{\mathcal {F}}}})\) and \(c \in {\mathbb {R}} \). Translation invariance is a synonym for this.
 
5
In fact, it is \({\tilde{\rho }}(X):= \rho (-X)\) that satisfies the risk measures axioms as developed in Artzner et al. [1] and Föllmer and Schied [24], but we will work with the increasing functional \(\rho \) for ease of notation.
 
6
This condition is also known as the flow property. We refer to Cheridito et al. [11], Delbaen [15], Artzner et al. [2], Ruszczyński and Shapiro [40], Detlefsen and Scandolo [17] for discussions on the consequences of time-consistency.
 
7
This corresponds to the standard OCE risk measure up to a minus sign.
 
8
\(A'\) is the transpose of A.
 
9
To exemplify: Take \(m=d=1\) and \(\Gamma ^n_{1,2}=1,\Gamma ^n_{2,2}=-1/n\). Then \(H(t,y,1,\gamma ,\Gamma ^n)<\infty \) but in the limit (i.e. \(\Gamma _{1,2}=1,\Gamma _{2,2}=0\)) the Hamiltonian is infinite. Thus \(H<\infty \) is not closed and so there cannot be such continuous G.
 
10
See also Remark 3.5 for some comments on the growth properties of V.
 
11
The essential range of \(\eta Z\) is \(range(\eta Z):=[\mathop {\mathrm{ess}\,\mathrm{inf}}\eta Z,\mathop {\mathrm{ess}\,\mathrm{sup}} \eta Z]\).
 
12
This is definitely a technical point, and we see no reason why Theorem 1.1 would not hold without such assumption on the domain of \(l^*\). In fact, during revision of the present article, the authors and A. Max Reppen [3] derived existence and uniqueness for a related PDE in the case when the domain of \(l^*\) is bounded, but under a different notion of viscosity sub/super solution.
 
13
I.e. for all \(x_0=(s_0,y_0,z_0)\in [0,T]\times {\mathbb {R}}^m\times (0,+\infty )\) and \(\varphi \in C^2([0,T]\times {\mathbb {R}}^m\times (0,+\infty ))\) such that \(x_0\) is a local minimizer of \(w-\varphi \) and \(\varphi (x_0) = w(x_0)\), we have \(w(x_0)\ge \psi (y_0,z_0)\) if \(s_0=T\), and otherwise \( \partial _t\varphi (x_0) + H^n(x_0, D\varphi (x_0), D^2\varphi (x_0)) \le 0\).
 
Literature
2.
go back to reference Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5–22 (2007)MathSciNetMATHCrossRef Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., Ku, H.: Coherent multiperiod risk adjusted values and Bellman’s principle. Ann. Oper. Res. 152, 5–22 (2007)MathSciNetMATHCrossRef
3.
go back to reference Backhoff-Veraguas, J., Reppen, M., Tangpi, L.: Stochastic control of optimized certainty equivalent. Preprint, (2019). arXiv:2001.10108 Backhoff-Veraguas, J., Reppen, M., Tangpi, L.: Stochastic control of optimized certainty equivalent. Preprint, (2019). arXiv:​2001.​10108
4.
go back to reference Bäuerle, N., Ott, J.: Markov decision processes with average-value-at-risk criteria. Math. Methods Oper. Res. 74(3), 361–379 (2011)MathSciNetMATHCrossRef Bäuerle, N., Ott, J.: Markov decision processes with average-value-at-risk criteria. Math. Methods Oper. Res. 74(3), 361–379 (2011)MathSciNetMATHCrossRef
5.
go back to reference Ben-Tal, A., Teboulle, M.: Expected utility, penalty functions, and duality in stochastic nonlinear programming. Manag. Sci. 32(11), 1445–1466 (1986)MathSciNetMATHCrossRef Ben-Tal, A., Teboulle, M.: Expected utility, penalty functions, and duality in stochastic nonlinear programming. Manag. Sci. 32(11), 1445–1466 (1986)MathSciNetMATHCrossRef
6.
go back to reference Ben-Tal, A., Teboulle, M.: An old-new concept of convex risk measures: the optimized certainty equivalent. Math. Finance 17(3), 449–476 (2007)MathSciNetMATHCrossRef Ben-Tal, A., Teboulle, M.: An old-new concept of convex risk measures: the optimized certainty equivalent. Math. Finance 17(3), 449–476 (2007)MathSciNetMATHCrossRef
7.
go back to reference Benth, F.E., Karlsen, K.H., Reikvam, K.: A semilinear black and scholes partial differential equation for valuing american options. Finance Stoch. 7(3), 277–298 (2003)MathSciNetMATHCrossRef Benth, F.E., Karlsen, K.H., Reikvam, K.: A semilinear black and scholes partial differential equation for valuing american options. Finance Stoch. 7(3), 277–298 (2003)MathSciNetMATHCrossRef
8.
go back to reference Bokanowski, O., Bruder, B., Maroso, S., Zidani, H.: Numerical approximation for a superreplication problem under gamma constraints. SIAM J. Numer. Anal. 47(3), 2289–2320 (2009)MathSciNetMATHCrossRef Bokanowski, O., Bruder, B., Maroso, S., Zidani, H.: Numerical approximation for a superreplication problem under gamma constraints. SIAM J. Numer. Anal. 47(3), 2289–2320 (2009)MathSciNetMATHCrossRef
9.
go back to reference Bokanowski, O., Picarelli, A., Zidani, H.: State-constrained stochastic optimal control problems via reachability approach. SIAM J. Control Optim. 54(5), 2568–2593 (2016)MathSciNetMATHCrossRef Bokanowski, O., Picarelli, A., Zidani, H.: State-constrained stochastic optimal control problems via reachability approach. SIAM J. Control Optim. 54(5), 2568–2593 (2016)MathSciNetMATHCrossRef
10.
go back to reference Bouveret, G., Chassagneux, J.-F.: A comparison principle for PDEs arising in approximate hedging problems: application to Bermudan options. Appl. Math. Optim., pp 1–23 (2017) Bouveret, G., Chassagneux, J.-F.: A comparison principle for PDEs arising in approximate hedging problems: application to Bermudan options. Appl. Math. Optim., pp 1–23 (2017)
11.
go back to reference Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11(3), 57–106 (2006)MathSciNetMATHCrossRef Cheridito, P., Delbaen, F., Kupper, M.: Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Probab. 11(3), 57–106 (2006)MathSciNetMATHCrossRef
12.
go back to reference Coquet, F., Hu, Y., Mémin, J., Peng, S.: Filtration-consistent nonlinear expectations and related \(g\)-expectations. Probab. Theory Related Fields 123, 1–27 (2002)MathSciNetMATHCrossRef Coquet, F., Hu, Y., Mémin, J., Peng, S.: Filtration-consistent nonlinear expectations and related \(g\)-expectations. Probab. Theory Related Fields 123, 1–27 (2002)MathSciNetMATHCrossRef
13.
go back to reference Da Lio, F., Ley, O.: Uniqueness results for second-order Bellman–Issacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45, 74–106 (2006)MathSciNetMATHCrossRef Da Lio, F., Ley, O.: Uniqueness results for second-order Bellman–Issacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45, 74–106 (2006)MathSciNetMATHCrossRef
14.
go back to reference Da Lio, F., Ley, O.: Convex Hamilton–Jacobi equations under superlinear growth conditions on data. Appl. Math. Optim. 63(3), 309–339 (2011)MathSciNetMATHCrossRef Da Lio, F., Ley, O.: Convex Hamilton–Jacobi equations under superlinear growth conditions on data. Appl. Math. Optim. 63(3), 309–339 (2011)MathSciNetMATHCrossRef
15.
go back to reference Delbaen, F.: The structure of \(m\)-stable sets and in particular of the set of risk neutral measures. In: Memoriam Paul-André Meyer–Seminaire de Probabilités XXXIX, pp. 215–258. Springer, Berlin (2006) Delbaen, F.: The structure of \(m\)-stable sets and in particular of the set of risk neutral measures. In: Memoriam Paul-André Meyer–Seminaire de Probabilités XXXIX, pp. 215–258. Springer, Berlin (2006)
16.
go back to reference Delbaen, F., Peng, S., Rosazza Gianin, E.: Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14, 449–472 (2010)MathSciNetMATHCrossRef Delbaen, F., Peng, S., Rosazza Gianin, E.: Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14, 449–472 (2010)MathSciNetMATHCrossRef
18.
go back to reference Drapeau, S., Mainberger, C.: Stability and Markov properties of foward backward minimal supersolutions. Electron. J. Probab. 21(41), 1–15 (2016)MATH Drapeau, S., Mainberger, C.: Stability and Markov properties of foward backward minimal supersolutions. Electron. J. Probab. 21(41), 1–15 (2016)MATH
19.
go back to reference Drapeau, S., Kupper, M., Papapantoleon, A.: A Fourier approach to the computation of CVaR and optimized certainty equivalents. J. Risk 16(6), 3–29 (2014)CrossRef Drapeau, S., Kupper, M., Papapantoleon, A.: A Fourier approach to the computation of CVaR and optimized certainty equivalents. J. Risk 16(6), 3–29 (2014)CrossRef
20.
go back to reference Drapeau, S., Kupper, M., Gianin, E.R., Tangpi, L.: Dual representation of minimal supersolutions of convex BSDEs. Ann. Inst. H. Poincaré Probab. Stat. 52(2), 868–887 (2016)MathSciNetMATHCrossRef Drapeau, S., Kupper, M., Gianin, E.R., Tangpi, L.: Dual representation of minimal supersolutions of convex BSDEs. Ann. Inst. H. Poincaré Probab. Stat. 52(2), 868–887 (2016)MathSciNetMATHCrossRef
21.
22.
23.
go back to reference Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions, vol. 25 of Stochastic Modelling and Applied Probability, second edition. Springer, New York (2006) Fleming, W.H., Soner, H.M.: Controlled Markov processes and viscosity solutions, vol. 25 of Stochastic Modelling and Applied Probability, second edition. Springer, New York (2006)
24.
go back to reference Föllmer, H., Schied, A.: Stochastic finance. Walter de Gruyter & Co., Berlin, extended edition. An introduction in discrete time (2011) Föllmer, H., Schied, A.: Stochastic finance. Walter de Gruyter & Co., Berlin, extended edition. An introduction in discrete time (2011)
25.
go back to reference Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc, Englewood Cliffs (1964)MATH Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall Inc, Englewood Cliffs (1964)MATH
26.
go back to reference Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, vol. 24 of North-Holland Mathematical Library, second edition . North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo(1989) Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, vol. 24 of North-Holland Mathematical Library, second edition . North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo(1989)
27.
28.
go back to reference Kunita, H.: Stochastic differential equations based on lévy processes and stochastic flows of diffeomorphisms. In: Real and stochastic analysis, pp. 305–373. Springer, Berlin (2004) Kunita, H.: Stochastic differential equations based on lévy processes and stochastic flows of diffeomorphisms. In: Real and stochastic analysis, pp. 305–373. Springer, Berlin (2004)
29.
go back to reference Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math. Financ. Econ. 2(3), 189–210 (2009)MathSciNetMATHCrossRef Kupper, M., Schachermayer, W.: Representation results for law invariant time consistent functions. Math. Financ. Econ. 2(3), 189–210 (2009)MathSciNetMATHCrossRef
30.
go back to reference Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74(6), 1447–1498 (2006)MathSciNetMATHCrossRef Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74(6), 1447–1498 (2006)MathSciNetMATHCrossRef
31.
go back to reference Mataramvura, S., Øksendal, B.: Risk minimizing portfolios and HJBI equations for stochastic differential games. Stochastics 80(4), 317–337 (2008)MathSciNetMATHCrossRef Mataramvura, S., Øksendal, B.: Risk minimizing portfolios and HJBI equations for stochastic differential games. Stochastics 80(4), 317–337 (2008)MathSciNetMATHCrossRef
32.
go back to reference Miller, C.W., Yang, I.: Optimal control of conditional value-at-risk in continuous time. SIAM J. Control Optim. 55(2), 856–884 (2017)MathSciNetMATHCrossRef Miller, C.W., Yang, I.: Optimal control of conditional value-at-risk in continuous time. SIAM J. Control Optim. 55(2), 856–884 (2017)MathSciNetMATHCrossRef
33.
go back to reference Neufeld, A., Nutz, M.: Nonlinear Lévy processes and their characteristics. Trans. AMS 369(1), 69–95 (2017)MATHCrossRef Neufeld, A., Nutz, M.: Nonlinear Lévy processes and their characteristics. Trans. AMS 369(1), 69–95 (2017)MATHCrossRef
34.
go back to reference On Banking Supervision, B.C.: Fundamental review of the trading book: a revised market risk framework. Bank for international settlments (2014) On Banking Supervision, B.C.: Fundamental review of the trading book: a revised market risk framework. Bank for international settlments (2014)
35.
go back to reference Pflug, G.C., Pichler, A.: Time-inconsistent multistage stochastic programs: martingale bounds. Eur. J. Oper. Res. 249(1), 155–163 (2016a)MathSciNetMATHCrossRef Pflug, G.C., Pichler, A.: Time-inconsistent multistage stochastic programs: martingale bounds. Eur. J. Oper. Res. 249(1), 155–163 (2016a)MathSciNetMATHCrossRef
36.
go back to reference Pflug, G.C., Pichler, A.: Time-consistent decisions and temporal decomposition of coherent risk functionals. Math. Oper. Res. 41(2), 682–699 (2016b)MathSciNetMATHCrossRef Pflug, G.C., Pichler, A.: Time-consistent decisions and temporal decomposition of coherent risk functionals. Math. Oper. Res. 41(2), 682–699 (2016b)MathSciNetMATHCrossRef
37.
go back to reference Pham, H.: Continuous-time stochastic control and optimization with financial applications. Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009) Pham, H.: Continuous-time stochastic control and optimization with financial applications. Stochastic Modelling and Applied Probability, vol. 61. Springer, Berlin (2009)
38.
go back to reference Rockafellar, R., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance, pp. 1443–1471 (2002) Rockafellar, R., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance, pp. 1443–1471 (2002)
41.
go back to reference Shapiro, A.: On a time consistency concept in risk averse multistage stochastic programming. Oper. Res. Lett. 37(3), 143–147 (2009)MathSciNetMATHCrossRef Shapiro, A.: On a time consistency concept in risk averse multistage stochastic programming. Oper. Res. Lett. 37(3), 143–147 (2009)MathSciNetMATHCrossRef
42.
go back to reference Touzi, N.: Optimal stochastic control, stochastic target problems, and backward SDE, vol. 29 of Fields Institute Monographs. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2013. With Chapter 13 by Angès Tourin Touzi, N.: Optimal stochastic control, stochastic target problems, and backward SDE, vol. 29 of Fields Institute Monographs. Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2013. With Chapter 13 by Angès Tourin
43.
go back to reference Vargiolu, T.: Existence, uniqueness and smoothness for the Black–Scholes–Barenblatt equation. Universita di Padova, Department of Pure and Applied Mathematics, Rapporto Interno, (5) (2001) Vargiolu, T.: Existence, uniqueness and smoothness for the Black–Scholes–Barenblatt equation. Universita di Padova, Department of Pure and Applied Mathematics, Rapporto Interno, (5) (2001)
44.
go back to reference Yong, J., Zhou, X.: Stochastic Controls, Hamiltonian Systems and HJB Equations. Springer, New York (2000)MATH Yong, J., Zhou, X.: Stochastic Controls, Hamiltonian Systems and HJB Equations. Springer, New York (2000)MATH
45.
go back to reference Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42(1), 19–33 (2000)MathSciNetMATHCrossRef Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: a stochastic LQ framework. Appl. Math. Optim. 42(1), 19–33 (2000)MathSciNetMATHCrossRef
Metadata
Title
On the dynamic representation of some time-inconsistent risk measures in a Brownian filtration
Authors
Julio Backhoff-Veraguas
Ludovic Tangpi
Publication date
24-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Mathematics and Financial Economics / Issue 3/2020
Print ISSN: 1862-9679
Electronic ISSN: 1862-9660
DOI
https://doi.org/10.1007/s11579-020-00261-2

Other articles of this Issue 3/2020

Mathematics and Financial Economics 3/2020 Go to the issue