Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 13/2021

18-08-2021 | STRENGTH AND PLASTICITY

On the Effective Elastic Properties of SiC/Al Metal Matrix Composite within an Intermingled Fractal Units Model

Authors: Wen Jiang, Weixing Yao, Piao Li, Mingze Ma

Published in: Physics of Metals and Metallography | Issue 13/2021

Login to get access
share
SHARE

Abstract

The microstructure of particle-reinforced metal matrix composites (PMMCs) and its parameters (such as particle size distribution, particle volume fraction, particle shape, etc.) have a great influence on the elastic modulus of PMMC. In this paper, the intermingled fractal units (IFU) model was used to describe the microstructure of PMMCs. Based on the spring series-parallel connection model, an analytical method of predicting the elastic modulus was proposed, and the area fraction, size distribution, and interface of the reinforced particles were taken into consideration. The tensile experiments performed on three groups of the SiC/Al composite specimens with different microstructure (namely, of different particle shape, size, and volume fraction of reinforcing particles) were conducted to evaluate the elastic modulus and strength properties. The comparison between the predicted and experimental results has proved the applicability and effectiveness of the method proposed in this paper.
Literature
1.
go back to reference A. Melaibari, A. Fathy, M. Mansouri, and M. A. Eltaher, “Experimental and numerical investigation on strengthening mechanisms of nanostructured Al–SiC composites,” J. Alloy Compd. 774, 1123–1132 (2019). CrossRef A. Melaibari, A. Fathy, M. Mansouri, and M. A. Eltaher, “Experimental and numerical investigation on strengthening mechanisms of nanostructured Al–SiC composites,” J. Alloy Compd. 774, 1123–1132 (2019). CrossRef
2.
go back to reference X. Gao, X. Zhang, and L. Geng, “Strengthening and fracture behaviors in SiCp/Al composites with network particle distribution architecture,” Mater. Sci. Eng., A 740– 741, 353–362 (2019). CrossRef X. Gao, X. Zhang, and L. Geng, “Strengthening and fracture behaviors in SiCp/Al composites with network particle distribution architecture,” Mater. Sci. Eng., A 740741, 353–362 (2019). CrossRef
3.
go back to reference C. Wu, J. Zhang, G. Luo, Q. Shen, Z. Gan, J. Liu, and L. Zhang, “Interfacial segregation and precipitates behavior in the ultrafine grained Al-based metal matrix composites,” J. Alloy Compd. 770, 625–630 (2019). CrossRef C. Wu, J. Zhang, G. Luo, Q. Shen, Z. Gan, J. Liu, and L. Zhang, “Interfacial segregation and precipitates behavior in the ultrafine grained Al-based metal matrix composites,” J. Alloy Compd. 770, 625–630 (2019). CrossRef
4.
go back to reference J. B. Ferguson, X. Thao, P. K. Rohatgi, K. Cho, and C.-S. Kim, “Computational and analytical prediction of the elastic modulus and yield stress in particulate-reinforced metal matrix composites,” Scr. Mater. 83, 45–48 (2014). CrossRef J. B. Ferguson, X. Thao, P. K. Rohatgi, K. Cho, and C.-S. Kim, “Computational and analytical prediction of the elastic modulus and yield stress in particulate-reinforced metal matrix composites,” Scr. Mater. 83, 45–48 (2014). CrossRef
5.
go back to reference N. Chawla, U. Habel, Y.-L. Shen, C. Andres, J. W. Jones, and J. E. Allison, “The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites,” Metall. Mater. Trans. A 31, 531–540 (2000). CrossRef N. Chawla, U. Habel, Y.-L. Shen, C. Andres, J. W. Jones, and J. E. Allison, “The effect of matrix microstructure on the tensile and fatigue behavior of SiC particle-reinforced 2080 Al matrix composites,” Metall. Mater. Trans. A 31, 531–540 (2000). CrossRef
6.
go back to reference M. Song, “Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites,” Trans. Nonferrous Met. Soc. China 19, 1400–1404 (2009). CrossRef M. Song, “Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites,” Trans. Nonferrous Met. Soc. China 19, 1400–1404 (2009). CrossRef
7.
go back to reference L. C. Bian, W. Liu, and J. Pan, “Probability of debonding and effective elastic properties of particle-reinforced composites,” J. Mech. 33, 789–796 (2017). CrossRef L. C. Bian, W. Liu, and J. Pan, “Probability of debonding and effective elastic properties of particle-reinforced composites,” J. Mech. 33, 789–796 (2017). CrossRef
8.
go back to reference C. Sun, M. Song, Z. Wang, and Y. He, “Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites,” J. Mater. Eng. Perform. 20, 1606–1612 (2011). CrossRef C. Sun, M. Song, Z. Wang, and Y. He, “Effect of particle size on the microstructures and mechanical properties of SiC-reinforced pure aluminum composites,” J. Mater. Eng. Perform. 20, 1606–1612 (2011). CrossRef
9.
go back to reference S. G. Song, N. Shi, G. T. Gray III, and J. A. Roberts, “Reinforcement shape effects on the fracture behavior and ductility of particulate-reinforced 6061-Al matrix composites,” Metall. Mater. Trans. A 27, 3739–3746 (1996). CrossRef S. G. Song, N. Shi, G. T. Gray III, and J. A. Roberts, “Reinforcement shape effects on the fracture behavior and ductility of particulate-reinforced 6061-Al matrix composites,” Metall. Mater. Trans. A 27, 3739–3746 (1996). CrossRef
10.
go back to reference Y. Tang, Z. Chen, A. Borbély, G. Ji, S. Y. Zhong, D. Schryvers, et al., “Quantitative study of particle size distribution in an in-situ grown Al–TiB 2 composite by synchrotron X-ray diffraction and electron microscopy,” Mater. Charact. 102, 131–136 (2015). CrossRef Y. Tang, Z. Chen, A. Borbély, G. Ji, S. Y. Zhong, D. Schryvers, et al., “Quantitative study of particle size distribution in an in-situ grown Al–TiB 2 composite by synchrotron X-ray diffraction and electron microscopy,” Mater. Charact. 102, 131–136 (2015). CrossRef
11.
go back to reference W. Voigt, “Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper,” Ann. Phys. (Berlin) 274, 573–587 (1889). CrossRef W. Voigt, “Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper,” Ann. Phys. (Berlin) 274, 573–587 (1889). CrossRef
12.
go back to reference A. Reuss, “A calculation of the bulk modulus of polycrystalline materials,” Math. Methods 9, 49–58 (1929). A. Reuss, “A calculation of the bulk modulus of polycrystalline materials,” Math. Methods 9, 49–58 (1929).
13.
go back to reference R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids 13, 213–222 (1965). CrossRef R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids 13, 213–222 (1965). CrossRef
14.
go back to reference T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall. 21, 571–574 (1973). CrossRef T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall. 21, 571–574 (1973). CrossRef
15.
go back to reference M. Song and D. Xiao, “Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites,” Mater. Sci. Eng., A 474, 371–375 (2008). CrossRef M. Song and D. Xiao, “Modeling the fracture toughness and tensile ductility of SiCp/Al metal matrix composites,” Mater. Sci. Eng., A 474, 371–375 (2008). CrossRef
16.
go back to reference D. J. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. London, Ser. A 241, 376–396 (1957). CrossRef D. J. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. London, Ser. A 241, 376–396 (1957). CrossRef
17.
go back to reference J. F. Zhang, X. X. Zhang, Q. Z. Wang, B. L. Xiao, and Z. Y. Ma, “Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading,” Mech. Mater. 122, 96–103 (2018). CrossRef J. F. Zhang, X. X. Zhang, Q. Z. Wang, B. L. Xiao, and Z. Y. Ma, “Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading,” Mech. Mater. 122, 96–103 (2018). CrossRef
18.
go back to reference H. Qing, “Micromechanical study of influence of interface strength on mechanical properties of metal matrix composites under uniaxial and biaxial tensile loadings,” Comput. Mater. Sci. 89, 102–113 (2014). CrossRef H. Qing, “Micromechanical study of influence of interface strength on mechanical properties of metal matrix composites under uniaxial and biaxial tensile loadings,” Comput. Mater. Sci. 89, 102–113 (2014). CrossRef
19.
go back to reference L. Molent, A. Spagnoli, A. Carpinteri, and R. Jones, “Using the lead crack concept and fractal geometry for fatigue lifting of metallic structural components,” Int. J. Fatigue 102, 214–220 (2017). CrossRef L. Molent, A. Spagnoli, A. Carpinteri, and R. Jones, “Using the lead crack concept and fractal geometry for fatigue lifting of metallic structural components,” Int. J. Fatigue 102, 214–220 (2017). CrossRef
20.
go back to reference W. Wei, J. Cai, X. Hu, P. Fan, Q. Han, J. Lu, et al., “A numerical study on fractal dimensions of current streamlines in two-dimensional and three-dimensional pore fractal models of porous media,” Fractals 23, 1540012 (2015). CrossRef W. Wei, J. Cai, X. Hu, P. Fan, Q. Han, J. Lu, et al., “A numerical study on fractal dimensions of current streamlines in two-dimensional and three-dimensional pore fractal models of porous media,” Fractals 23, 1540012 (2015). CrossRef
21.
go back to reference B. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1983). CrossRef B. B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1983). CrossRef
22.
go back to reference V. Hotař and A. Hotař, “Fractal dimension used for evaluation of oxidation behavior of Fe–Al–Cr–Zr–C alloys,” Corros. Sci. 133, 141–149 (2018). CrossRef V. Hotař and A. Hotař, “Fractal dimension used for evaluation of oxidation behavior of Fe–Al–Cr–Zr–C alloys,” Corros. Sci. 133, 141–149 (2018). CrossRef
23.
go back to reference A. Zhou, Y. Fan, W.-C. Cheng, and J. Zhang, “A fractal model to interpret porosity-dependent hydraulic properties for unsaturated soils,” Adv. Civil Eng. 2019, 1–13 (2019). A. Zhou, Y. Fan, W.-C. Cheng, and J. Zhang, “A fractal model to interpret porosity-dependent hydraulic properties for unsaturated soils,” Adv. Civil Eng. 2019, 1–13 (2019).
24.
go back to reference J. Liu, W. Huo, X. Zhang, B. Ren, Y. Li, Z. Zhang, and J. Yang, “Optimal design on the high-temperature mechanical properties of porous alumina ceramics based on fractal dimension analysis,” J. Adv. Ceram. 7, 89–98 (2018). CrossRef J. Liu, W. Huo, X. Zhang, B. Ren, Y. Li, Z. Zhang, and J. Yang, “Optimal design on the high-temperature mechanical properties of porous alumina ceramics based on fractal dimension analysis,” J. Adv. Ceram. 7, 89–98 (2018). CrossRef
25.
go back to reference C. Atzeni, G. Pia, and U. Sanna, “Fractal modeling of medium–high porosity SiC ceramics,” J. Eur. Ceram. Soc. 28, 2809–2814 (2008). CrossRef C. Atzeni, G. Pia, and U. Sanna, “Fractal modeling of medium–high porosity SiC ceramics,” J. Eur. Ceram. Soc. 28, 2809–2814 (2008). CrossRef
26.
go back to reference C. Zhang, Y. Chen, and W. Yao, “The use of fractal dimensions in the prediction of residual fatigue life of pre-corroded aluminum alloy specimens,” Int. J. Fatigue 59, 282–291 (2014). CrossRef C. Zhang, Y. Chen, and W. Yao, “The use of fractal dimensions in the prediction of residual fatigue life of pre-corroded aluminum alloy specimens,” Int. J. Fatigue 59, 282–291 (2014). CrossRef
27.
go back to reference G. Pia and U. Sanna, “Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials,” Appl. Therm. Eng. 61, 186–192 (2013). CrossRef G. Pia and U. Sanna, “Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials,” Appl. Therm. Eng. 61, 186–192 (2013). CrossRef
28.
go back to reference G. Pia and U. Sanna, “An intermingled fractal units model and method to predict permeability in porous rock,” Int. J. Eng. Sci. 75, 31–39 (2014). CrossRef G. Pia and U. Sanna, “An intermingled fractal units model and method to predict permeability in porous rock,” Int. J. Eng. Sci. 75, 31–39 (2014). CrossRef
29.
go back to reference G. Pia, L. Casnedi, M. Ionta, and U. Sanna, “On the elastic deformation properties of porous ceramic materials obtained by pore-forming agent method,” Ceram. Int. 41, 11097–11105 (2015). CrossRef G. Pia, L. Casnedi, M. Ionta, and U. Sanna, “On the elastic deformation properties of porous ceramic materials obtained by pore-forming agent method,” Ceram. Int. 41, 11097–11105 (2015). CrossRef
30.
go back to reference Z.-L. Chen, N.-T. Wang, L. Sun, X.-H. Tan, and S. Deng, “Prediction method for permeability of porous media with tortuosity effect based on an intermingled fractal units model,” Int. J. Eng. Sci. 121, 83–90 (2017). CrossRef Z.-L. Chen, N.-T. Wang, L. Sun, X.-H. Tan, and S. Deng, “Prediction method for permeability of porous media with tortuosity effect based on an intermingled fractal units model,” Int. J. Eng. Sci. 121, 83–90 (2017). CrossRef
31.
go back to reference W. Liu and L. Bian, “Influences of inclusions and corresponding interphase on elastic properties of composites,” Arch. Appl. Mech. 88, 1507–1524 (2018). CrossRef W. Liu and L. Bian, “Influences of inclusions and corresponding interphase on elastic properties of composites,” Arch. Appl. Mech. 88, 1507–1524 (2018). CrossRef
Metadata
Title
On the Effective Elastic Properties of SiC/Al Metal Matrix Composite within an Intermingled Fractal Units Model
Authors
Wen Jiang
Weixing Yao
Piao Li
Mingze Ma
Publication date
18-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 13/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21130056