Skip to main content
Top

2024 | OriginalPaper | Chapter

On the Exact Solutions of a Sequence of Nonlinear Differential Equations Possessing Polynomial Nonlinearities

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We apply the Simple Equations Method (SEsM) to a sequence of nonlinear differential equations possessing polynomial nonlinearities and connected to the SEIR model of epidemics spread. Exact solutions are obtained and several of these solutions are discussed from the point of view of application to the model of epidemic waves.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Drazin. P.G.: Nonlinear Systems. Cambridge University Press, Cambridge, UK (1992) Drazin. P.G.: Nonlinear Systems. Cambridge University Press, Cambridge, UK (1992)
5.
go back to reference Vitanov N.K.: Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models. Springer, Cham (2016) Vitanov N.K.: Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models. Springer, Cham (2016)
17.
go back to reference Struble R.: Nonlinear Differential Equations. Dover, New York (2018) Struble R.: Nonlinear Differential Equations. Dover, New York (2018)
18.
go back to reference Kantz, H., T. Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, UK (2004) Kantz, H., T. Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, UK (2004)
20.
go back to reference Jordanov, I., Nikolova, E.: On nonlinear waves in the spatio-temporal dynamics of interacting populations. Journal of Theoretical and Applied Mechanics 43, 69 – 76 (2013). arXiv preprint arXiv:1208.5465. Jordanov, I., Nikolova, E.: On nonlinear waves in the spatio-temporal dynamics of interacting populations. Journal of Theoretical and Applied Mechanics 43, 69 – 76 (2013). arXiv preprint arXiv:​1208.​5465.
21.
go back to reference Vitanov, N.K.: Results Connected to Time Series Analysis and Machine Learning. In: Atanassov, K.T. (eds) Research in Computer Science in the Bulgarian Academy of Sciences. Studies in Computational Intelligence, vol 934, pp.363-384. Springer, Cham. (2021). https://doi.org/10.1007/978-3-030-72284-5_17 Vitanov, N.K.: Results Connected to Time Series Analysis and Machine Learning. In: Atanassov, K.T. (eds) Research in Computer Science in the Bulgarian Academy of Sciences. Studies in Computational Intelligence, vol 934, pp.363-384. Springer, Cham. (2021). https://​doi.​org/​10.​1007/​978-3-030-72284-5_​17
22.
go back to reference Jordanov, I. P.: On the nonlinear waves in (2+ 1)-dimensional population systems. Comptes rendus de l’Académie bulgare des Sciences 61, 307-314 (2008). Jordanov, I. P.: On the nonlinear waves in (2+ 1)-dimensional population systems. Comptes rendus de l’Académie bulgare des Sciences 61, 307-314 (2008).
24.
go back to reference Vitanov, N. K., Ausloos, M. R.: Knowledge epidemics and population dynamics models for describing idea diffusion. In: Scharnhorst A., Boerner K., van den Besselaar P. (eds.) Models of science dynamics. Understanding Complex Systems. pp. 69-125. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23068-4_3 Vitanov, N. K., Ausloos, M. R.: Knowledge epidemics and population dynamics models for describing idea diffusion. In: Scharnhorst A., Boerner K., van den Besselaar P. (eds.) Models of science dynamics. Understanding Complex Systems. pp. 69-125. Springer, Berlin, Heidelberg (2012). https://​doi.​org/​10.​1007/​978-3-642-23068-4_​3
25.
go back to reference Ashenfelter, K. T., Boker, S. M., Waddell, J. R., Vitanov, N.: Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation. Journal of Experimental Psychology: Human Perception and Performance 35, 1072 – 1091 (2009). https://doi.org/10.1037/a0015017 Ashenfelter, K. T., Boker, S. M., Waddell, J. R., Vitanov, N.: Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation. Journal of Experimental Psychology: Human Perception and Performance 35, 1072 – 1091 (2009). https://​doi.​org/​10.​1037/​a0015017
26.
go back to reference Brockwell P.J., Davis R.A, Calder M.V.: Introduction to Time Series and Forecasting. Springer, New York (2002) Brockwell P.J., Davis R.A, Calder M.V.: Introduction to Time Series and Forecasting. Springer, New York (2002)
34.
go back to reference Ablowitz, M. J., Clarkson, P. A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, UK (1991) Ablowitz, M. J., Clarkson, P. A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, UK (1991)
36.
go back to reference Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, UK, (2004) Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, UK, (2004)
37.
go back to reference Vitanov, N. K.: Recent developments of the methodology of the modified method of simplest equation with application. Pliska Studia Mathematica Bulgarica 30, 29 – 42 (2019). Vitanov, N. K.: Recent developments of the methodology of the modified method of simplest equation with application. Pliska Studia Mathematica Bulgarica 30, 29 – 42 (2019).
38.
go back to reference Vitanov, N.K.: Modified method of simplest equation for obtaining exact solutions of nonlinear partia differential equations: history, recent developments of the methodology and studied of classes of equations. Journal of Theoretical and Applied Mechanics 49, 107 – 122 (2019). Vitanov, N.K.: Modified method of simplest equation for obtaining exact solutions of nonlinear partia differential equations: history, recent developments of the methodology and studied of classes of equations. Journal of Theoretical and Applied Mechanics 49, 107 – 122 (2019).
39.
50.
go back to reference Vitanov, N. K.: Complicated exact solutions to the 2+ 1-dimensional sine-Gordon equation. Zeitschrift für angewandte Mathematik und Mechanik, 78, S787 – S788 (1998). Vitanov, N. K.: Complicated exact solutions to the 2+ 1-dimensional sine-Gordon equation. Zeitschrift für angewandte Mathematik und Mechanik, 78, S787 – S788 (1998).
54.
55.
go back to reference Vitanov, N. K., Dimitrova, Z. I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Communications in Nonlinear Science and Numerical Simulation 15, 2836 – 2845 (2010). https://doi.org/10.1016/j.cnsns.2009.11.029 Vitanov, N. K., Dimitrova, Z. I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Communications in Nonlinear Science and Numerical Simulation 15, 2836 – 2845 (2010). https://​doi.​org/​10.​1016/​j.​cnsns.​2009.​11.​029
58.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: On the class of nonlinear PDEs that can be treated by the modified method of simplest equation. Application to generalized Degasperis-Processi equation and b-equation. Communications in Nonlinear Science and Numerical Simulation 16, 3033 – 3044 (2011). https://doi.org/10.1016/j.cnsns.2010.11.013 Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: On the class of nonlinear PDEs that can be treated by the modified method of simplest equation. Application to generalized Degasperis-Processi equation and b-equation. Communications in Nonlinear Science and Numerical Simulation 16, 3033 – 3044 (2011). https://​doi.​org/​10.​1016/​j.​cnsns.​2010.​11.​013
60.
go back to reference Vitanov, N. K.: On modified method of simplest equation for obtaining exact solutions of nonlinear PDEs: case of elliptic simplest equation. Pliska Studia Mathematica Bulgarica 21, 257 – 266 (2012). Vitanov, N. K.: On modified method of simplest equation for obtaining exact solutions of nonlinear PDEs: case of elliptic simplest equation. Pliska Studia Mathematica Bulgarica 21, 257 – 266 (2012).
61.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation. Applied Mathematics and Computation 219, 7480 – 7492 (2013). https://doi.org/10.1016/j.amc.2013.01.035 Vitanov, N. K., Dimitrova, Z. I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation. Applied Mathematics and Computation 219, 7480 – 7492 (2013). https://​doi.​org/​10.​1016/​j.​amc.​2013.​01.​035
63.
64.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications. Applied Mathematics and Computation 269, 363 – 378 (2015). https://doi.org/10.1016/j.amc.2015.07.060 Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications. Applied Mathematics and Computation 269, 363 – 378 (2015). https://​doi.​org/​10.​1016/​j.​amc.​2015.​07.​060
65.
66.
go back to reference Vitanov, N. K., Dimitrova, Z. I.: On the modified method of simplest equation and the nonlinear Schrödinger equation. Journal of Theoretical and Applied Mechanics 48, 59 – 68 (2018). Vitanov, N. K., Dimitrova, Z. I.: On the modified method of simplest equation and the nonlinear Schrödinger equation. Journal of Theoretical and Applied Mechanics 48, 59 – 68 (2018).
68.
go back to reference Jordanov, I.P., Vitanov, N.K.: On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol. 793, pp. 199 – 210. Springer, Cham. (2019). https://doi.org/10.1007/978-3-319-97277-0_16 Jordanov, I.P., Vitanov, N.K.: On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol. 793, pp. 199 – 210. Springer, Cham. (2019). https://​doi.​org/​10.​1007/​978-3-319-97277-0_​16
69.
go back to reference Nikolova, E. V., Chilikova-Lubomirova, M., Vitanov, N. K.: Exact solutions of a fifth-order Korteweg-de Vries-type equation modeling nonlinear long waves in several natural phenomena. AIP Conference Proceedings vol. 2321, 030026 (2021). https://doi.org/10.1063/5.0040089 Nikolova, E. V., Chilikova-Lubomirova, M., Vitanov, N. K.: Exact solutions of a fifth-order Korteweg-de Vries-type equation modeling nonlinear long waves in several natural phenomena. AIP Conference Proceedings vol. 2321, 030026 (2021). https://​doi.​org/​10.​1063/​5.​0040089
71.
go back to reference Nikolova, E.V., Serbezov, D.Z., Jordanov, I.P., Vitanov, N.K.: Non-linear Waves of Interacting Populations with Density-Dependent Diffusion. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds.) Advanced Computing in Industrial Mathematics. BGSIAM 2018. Studies in Computational Intelligence, vol. 961, pp. 324 – 332. Springer, Cham. (2021). https://doi.org/10.1007/978-3-030-71616-5_29 Nikolova, E.V., Serbezov, D.Z., Jordanov, I.P., Vitanov, N.K.: Non-linear Waves of Interacting Populations with Density-Dependent Diffusion. In: Georgiev, I., Kostadinov, H., Lilkova, E. (eds.) Advanced Computing in Industrial Mathematics. BGSIAM 2018. Studies in Computational Intelligence, vol. 961, pp. 324 – 332. Springer, Cham. (2021). https://​doi.​org/​10.​1007/​978-3-030-71616-5_​29
72.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Simple Equations Method (SEsM): Algorithm, connection with Hirota method, Inverse Scattering Transform Method, and several other methods. Entropy 23, 10 (2021). https://doi.org/10.3390/e23010010 Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Simple Equations Method (SEsM): Algorithm, connection with Hirota method, Inverse Scattering Transform Method, and several other methods. Entropy 23, 10 (2021). https://​doi.​org/​10.​3390/​e23010010
73.
go back to reference Vitanov. N.K.: Schrödinger Equation and Nonlinear Waves. Simpao V., Little H. (eds.). In: Understanding the Schrödinger Equation. pp. 37 - 92. Nova Science Publishers, New York (2020). Vitanov. N.K.: Schrödinger Equation and Nonlinear Waves. Simpao V., Little H. (eds.). In: Understanding the Schrödinger Equation. pp. 37 - 92. Nova Science Publishers, New York (2020).
80.
go back to reference Dimitrova, Z. I.: On several specific cases of the simple equations method (SEsM): Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method, general projective Riccati equations method, and first intergal method. AIP Conference Proceedings, vol. 2459, 030006 (2022). https://doi.org/10.1063/5.0083573 Dimitrova, Z. I.: On several specific cases of the simple equations method (SEsM): Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method, general projective Riccati equations method, and first intergal method. AIP Conference Proceedings, vol. 2459, 030006 (2022). https://​doi.​org/​10.​1063/​5.​0083573
84.
go back to reference Bauer, F., van den Driessche, P., Wu, J. Mathematical Epidemiology. Springer: Berlin/Heidelberg (2008). Bauer, F., van den Driessche, P., Wu, J. Mathematical Epidemiology. Springer: Berlin/Heidelberg (2008).
86.
go back to reference Keeling, M.J., Rohani, P. Modeling Infectious Diseases in Humans an Animals. Princeton University Press: Princeton, NJ, USA, (2008). Keeling, M.J., Rohani, P. Modeling Infectious Diseases in Humans an Animals. Princeton University Press: Princeton, NJ, USA, (2008).
Metadata
Title
On the Exact Solutions of a Sequence of Nonlinear Differential Equations Possessing Polynomial Nonlinearities
Author
Zlatinka I. Dimitrova
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_5

Premium Partner