Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Applicable Algebra in Engineering, Communication and Computing 3/2022

12-07-2020 | Original Paper

On the existence and non-existence of some classes of bent–negabent functions

Authors: Bimal Mandal, Subhamoy Maitra, Pantelimon Stănică

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 3/2022

Login to get access
share
SHARE

Abstract

In this paper we investigate different questions related to bent–negabent functions. We first take an expository look at the state-of-the-art research in this domain and point out some technical flaws in certain results and fix some of them. Further, we derive a necessary and sufficient condition for which the functions of the form \({\mathbf{x}}\cdot \pi ({\mathbf{y}})\oplus h({\mathbf{y}})\) [Maiorana–McFarland (\({\mathcal {M}}\))] is bent–negabent, and more generally, we study the non-existence of bent–negabent functions in the \({\mathcal {M}}\) class. We also identify some functions that are bent–negabent. Next, we continue the recent work by Mandal et al. (Discrete Appl Math 236:1–6, 2018) on rotation symmetric bent–negabent functions and show their non-existence in larger classes. For example, we prove that there is no rotation symmetric bent–negabent function in \(4p^k\) variables, where p is an odd prime. We present the non-existence of such functions in certain classes that are affine transformations of rotation symmetric functions. Keeping in mind the existing literature, we correct here some technical issues and errors found in other papers and provide some novel results.
Literature
1.
go back to reference Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S., Siang, M., Todo, Y.: GIFT: a small present towards reaching the limit of lightweight encryption. In: CHES 2017. LNCS, vol. 10529, pp. 321–345 (2017) Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S., Siang, M., Todo, Y.: GIFT: a small present towards reaching the limit of lightweight encryption. In: CHES 2017. LNCS, vol. 10529, pp. 321–345 (2017)
3.
go back to reference Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge University Press, Cambridge (2010) MATH Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models, pp. 257–397. Cambridge University Press, Cambridge (2010) MATH
4.
go back to reference Carlet, C.: On the secondary constructions of resilient and bent functions. Coding Cryptogr. Comb. 23, 3–28 (2004) MathSciNetMATH Carlet, C.: On the secondary constructions of resilient and bent functions. Coding Cryptogr. Comb. 23, 3–28 (2004) MathSciNetMATH
5.
6.
go back to reference Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications, 2nd edn. Academic Press, San Diego (2017) MATH Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications, 2nd edn. Academic Press, San Diego (2017) MATH
7.
go back to reference Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric bent functions. Disc Math. 309(8), 2398–2409 (2009) MathSciNetCrossRef Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric bent functions. Disc Math. 309(8), 2398–2409 (2009) MathSciNetCrossRef
8.
go back to reference Dillon, J.F.: A survey of bent functions. NSA Tech. J. NSAL-S-203(92), 191–215 (1972) ( Special Issue) Dillon, J.F.: A survey of bent functions. NSA Tech. J. NSAL-S-203(92), 191–215 (1972) ( Special Issue)
9.
go back to reference Kavut, S., Maitra, S., Yücel, M.D.: Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans. Inf. Theory 53(5), 1743–1751 (2007) MathSciNetCrossRef Kavut, S., Maitra, S., Yücel, M.D.: Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans. Inf. Theory 53(5), 1743–1751 (2007) MathSciNetCrossRef
10.
go back to reference McFarland, R.L.: A family of noncyclic difference sets. J. Comb. Theory Ser. A 15, 1–10 (1973) CrossRef McFarland, R.L.: A family of noncyclic difference sets. J. Comb. Theory Ser. A 15, 1–10 (1973) CrossRef
11.
go back to reference Mandal, B., Singh, B., Gangopadhyay, S., Maitra, S., Vetrivel, V.: On non-existence of bent–negabent rotation symmetric Boolean functions. Discrete Appl. Math. 236, 1–6 (2018) MathSciNetCrossRef Mandal, B., Singh, B., Gangopadhyay, S., Maitra, S., Vetrivel, V.: On non-existence of bent–negabent rotation symmetric Boolean functions. Discrete Appl. Math. 236, 1–6 (2018) MathSciNetCrossRef
12.
go back to reference Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014) MathSciNetCrossRef Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014) MathSciNetCrossRef
13.
go back to reference Mesnager, S.: Bent Functions—Fundamentals and Results, pp. 1–544. Springer, Bern (2016). ISBN 978-3-319-32593-4 Mesnager, S.: Bent Functions—Fundamentals and Results, pp. 1–544. Springer, Bern (2016). ISBN 978-3-319-32593-4
15.
go back to reference Parker, M.G., Pott, A.: On Boolean functions which are bent and negabent. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.Y. (eds.) Sequences, Subsequences, and Consequences, SSC 2007 LNCS, vol. 4893, pp. 9–23 (2007) Parker, M.G., Pott, A.: On Boolean functions which are bent and negabent. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.Y. (eds.) Sequences, Subsequences, and Consequences, SSC 2007 LNCS, vol. 4893, pp. 9–23 (2007)
16.
go back to reference Pieprzyk, J., Qu, C.X.: Fast hashing and rotation-symmetric functions. J. Univ. Comput. Sci. 5(1), 20–31 (1999) MathSciNet Pieprzyk, J., Qu, C.X.: Fast hashing and rotation-symmetric functions. J. Univ. Comput. Sci. 5(1), 20–31 (1999) MathSciNet
17.
go back to reference Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976) CrossRef Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976) CrossRef
18.
go back to reference Riera, C., Parker, M.G.: Generalized bent criteria for Boolean functions. IEEE Trans. Inf. Theory 52(9), 4142–4159 (2006) MathSciNetCrossRef Riera, C., Parker, M.G.: Generalized bent criteria for Boolean functions. IEEE Trans. Inf. Theory 52(9), 4142–4159 (2006) MathSciNetCrossRef
19.
go back to reference Schmidt, K.-U., Parker, M.G., Pott, A.: Negabent functions in Maiorana–McFarland class. In: SETA, LNCS 2008, vol. 5203, pp. 390–402 (2008) Schmidt, K.-U., Parker, M.G., Pott, A.: Negabent functions in Maiorana–McFarland class. In: SETA, LNCS 2008, vol. 5203, pp. 390–402 (2008)
20.
go back to reference Sarkar, S.: Characterizing negabent Boolean functions over finite fields. In: Proceedings of SETA 2012, LNCS, vol. 7280, pp. 77–88 (2012) Sarkar, S.: Characterizing negabent Boolean functions over finite fields. In: Proceedings of SETA 2012, LNCS, vol. 7280, pp. 77–88 (2012)
21.
go back to reference Sarkar, S., Cusick, T.W.: Initial results on the rotation symmetric bent–negabent functions. In: 7th International Workshop on Signal Design and Applications in Communications (IWSDA), pp. 80–84 (2015) Sarkar, S., Cusick, T.W.: Initial results on the rotation symmetric bent–negabent functions. In: 7th International Workshop on Signal Design and Applications in Communications (IWSDA), pp. 80–84 (2015)
22.
go back to reference Stănică, P., Gangopadhyay, S., Chaturvedi, A., Kar Gangopadhyay, A., Maitra, S.: Investigations on bent and negabent functions via the nega–Hadamard transform. IEEE Trans. Inf. Theory 58(6), 4064–4072 (2012) MathSciNetCrossRef Stănică, P., Gangopadhyay, S., Chaturvedi, A., Kar Gangopadhyay, A., Maitra, S.: Investigations on bent and negabent functions via the nega–Hadamard transform. IEEE Trans. Inf. Theory 58(6), 4064–4072 (2012) MathSciNetCrossRef
23.
go back to reference Stănică, P., Maitra, S.: Rotation symmetric Boolean functions—count and cryptographic properties. Discrete Appl. Math. 156, 1567–1580 (2008) MathSciNetCrossRef Stănică, P., Maitra, S.: Rotation symmetric Boolean functions—count and cryptographic properties. Discrete Appl. Math. 156, 1567–1580 (2008) MathSciNetCrossRef
24.
go back to reference Stănică, P., Mandal, B., Maitra, S.: The connection between quadratic bent–negabent functions and the Kerdock code. Appl. Algebra Eng. Commun. Comput. 30(5), 387–401 (2019) MathSciNetCrossRef Stănică, P., Mandal, B., Maitra, S.: The connection between quadratic bent–negabent functions and the Kerdock code. Appl. Algebra Eng. Commun. Comput. 30(5), 387–401 (2019) MathSciNetCrossRef
25.
go back to reference Su, W., Pott, A., Tang, X.: Characterization of negabent functions and construction of bent–negabent functions with maximum algebraic degree. IEEE Trans. Inf. Theory 59(6), 3387–3395 (2013) MathSciNetCrossRef Su, W., Pott, A., Tang, X.: Characterization of negabent functions and construction of bent–negabent functions with maximum algebraic degree. IEEE Trans. Inf. Theory 59(6), 3387–3395 (2013) MathSciNetCrossRef
26.
go back to reference Xia, T., Seberry, J., Pieprzyk, J., Charnes, C.: Homogeneous bent functions of degree \(n\) in \(2n\) variables do not exist for \(n > 3\). Discrete Appl. Math. 142(1–3), 127–132 (2004) MathSciNetCrossRef Xia, T., Seberry, J., Pieprzyk, J., Charnes, C.: Homogeneous bent functions of degree \(n\) in \(2n\) variables do not exist for \(n > 3\). Discrete Appl. Math. 142(1–3), 127–132 (2004) MathSciNetCrossRef
27.
go back to reference Zhang, F., Wei, Y., Pasalic, E.: Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015) MathSciNetCrossRef Zhang, F., Wei, Y., Pasalic, E.: Constructions of bent–negabent functions and their relation to the completed Maiorana–McFarland class. IEEE Trans. Inf. Theory 61(3), 1496–1506 (2015) MathSciNetCrossRef
Metadata
Title
On the existence and non-existence of some classes of bent–negabent functions
Authors
Bimal Mandal
Subhamoy Maitra
Pantelimon Stănică
Publication date
12-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 3/2022
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00444-w

Other articles of this Issue 3/2022

Applicable Algebra in Engineering, Communication and Computing 3/2022 Go to the issue

Premium Partner