Skip to main content
Top
Published in: Journal of Scientific Computing 3/2016

30-05-2015

On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers

Authors: Wei Deng, Wotao Yin

Published in: Journal of Scientific Computing | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The formulation
$$\begin{aligned} \min _{x,y} ~f(x)+g(y),\quad \text{ subject } \text{ to } Ax+By=b, \end{aligned}$$
where f and g are extended-value convex functions, arises in many application areas such as signal processing, imaging and image processing, statistics, and machine learning either naturally or after variable splitting. In many common problems, one of the two objective functions is strictly convex and has Lipschitz continuous gradient. On this kind of problem, a very effective approach is the alternating direction method of multipliers (ADM or ADMM), which solves a sequence of f/g-decoupled subproblems. However, its effectiveness has not been matched by a provably fast rate of convergence; only sublinear rates such as O(1 / k) and \(O(1/k^2)\) were recently established in the literature, though the O(1 / k) rates do not require strong convexity. This paper shows that global linear convergence can be guaranteed under the assumptions of strong convexity and Lipschitz gradient on one of the two functions, along with certain rank assumptions on A and B. The result applies to various generalizations of ADM that allow the subproblems to be solved faster and less exactly in certain manners. The derived rate of convergence also provides some theoretical guidance for optimizing the ADM parameters. In addition, this paper makes meaningful extensions to the existing global convergence theory of ADM generalizations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The results continue to hold in many cases when strong convexity is relaxed to strict convexity (e.g., \(-\log (x)\) is strictly convex but not strongly convex over \(x>0\). ADM always generates a bounded sequence \(Ax^k, By^k, {\uplambda }^k\), where the bound only depends on the starting point and the solution, even when the feasible set is unbounded. When restricted to a compact set, a strictly convex function is strongly convex.
 
2
Suppose a sequence \(\{u^k\}\) converges to \(u^*\). We say the convergence is (in some norm \(\Vert \cdot \Vert \))
  • Q-linear, if there exists \(\mu \in (0,1)\) such that \(\frac{\Vert u^{k+1}-u^*\Vert }{\Vert u^{k}-u^*\Vert }\le \mu \);
  • R-linear, if there exists a sequence \(\{\sigma ^k\}\) such that \(\Vert u^{k}-u^*\Vert \le \sigma ^k\) and \(\sigma ^k\rightarrow 0\) Q-linearly.
 
Literature
1.
go back to reference Boley, D.: Linear convergence of ADMM on a model problem. TR 12-009, Department of Computer Science and Engineering, University of Minnesota (2012) Boley, D.: Linear convergence of ADMM on a model problem. TR 12-009, Department of Computer Science and Engineering, University of Minnesota (2012)
2.
go back to reference Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)CrossRefMATH Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)CrossRefMATH
3.
go back to reference Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRef Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004)CrossRef
4.
go back to reference Cai, J., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337 (2009)CrossRefMathSciNet Cai, J., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337 (2009)CrossRefMathSciNet
5.
go back to reference Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64(1), 81–101 (1994)CrossRefMathSciNetMATH Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64(1), 81–101 (1994)CrossRefMathSciNetMATH
7.
go back to reference Davis, D., Yin, W.: Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions. arXiv preprint arXiv:1407.5210 (2014) Davis, D., Yin, W.: Faster convergence rates of relaxed Peaceman–Rachford and ADMM under regularity assumptions. arXiv preprint arXiv:​1407.​5210 (2014)
8.
go back to reference Deng, W., Yin, W., Zhang, Y.: Group sparse optimization by alternating direction method. In: SPIE Optical Engineering+Applications, pp. 88580R–88580R (2013) Deng, W., Yin, W., Zhang, Y.: Group sparse optimization by alternating direction method. In: SPIE Optical Engineering+Applications, pp. 88580R–88580R (2013)
9.
go back to reference Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)CrossRefMathSciNetMATH Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(2), 421–439 (1956)CrossRefMathSciNetMATH
10.
go back to reference Eckstein, J., Bertsekas, D.: An alternating direction method for linear programming. Division of Research, Harvard Business School, Laboratory for Information Technology, M.I., Systems (1990) Eckstein, J., Bertsekas, D.: An alternating direction method for linear programming. Division of Research, Harvard Business School, Laboratory for Information Technology, M.I., Systems (1990)
11.
go back to reference Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)CrossRefMathSciNetMATH Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)CrossRefMathSciNetMATH
12.
go back to reference Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. CAM report 09–31, UCLA (2009) Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. CAM report 09–31, UCLA (2009)
13.
go back to reference Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983) Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983)
14.
go back to reference Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)CrossRefMATH Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)CrossRefMATH
15.
go back to reference Glowinski, R.: Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer, Berlin (1984)CrossRef Glowinski, R.: Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer, Berlin (1984)CrossRef
16.
go back to reference Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Laboria (1975) Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. Laboria (1975)
17.
18.
go back to reference Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141(1–2), 349–382 (2013) Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141(1–2), 349–382 (2013)
19.
go back to reference Goldfarb, D., Yin, W.: Parametric maximum flow algorithms for fast total variation minimization. SIAM J. Sci. Comput. 31(5), 3712–3743 (2009)CrossRefMathSciNetMATH Goldfarb, D., Yin, W.: Parametric maximum flow algorithms for fast total variation minimization. SIAM J. Sci. Comput. 31(5), 3712–3743 (2009)CrossRefMathSciNetMATH
20.
go back to reference Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1), 272–293 (2010)CrossRefMathSciNetMATH Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split Bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45(1), 272–293 (2010)CrossRefMathSciNetMATH
21.
go back to reference Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014) Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)
22.
23.
go back to reference He, B., Liao, L., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92(1), 103–118 (2002)CrossRefMathSciNetMATH He, B., Liao, L., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92(1), 103–118 (2002)CrossRefMathSciNetMATH
24.
go back to reference He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numerische Mathematik 130(3), 567–577 (2014) He, B., Yuan, X.: On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers. Numerische Mathematik 130(3), 567–577 (2014)
25.
go back to reference He, B., Yuan, X.: On the \(O(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)CrossRefMathSciNetMATH He, B., Yuan, X.: On the \(O(1/n)\) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)CrossRefMathSciNetMATH
26.
27.
go back to reference Jiang, H., Deng, W., Shen, Z.: Surveillance video processing using compressive sensing. Inverse Probl. Imaging 6(2), 201–214 (2012) Jiang, H., Deng, W., Shen, Z.: Surveillance video processing using compressive sensing. Inverse Probl. Imaging 6(2), 201–214 (2012)
28.
go back to reference Liang, J., Fadili, J., Peyre, G., Luke, R.: Activity identification and local linear convergence of Douglas–Rachford/ADMM under partial smoothness. arXiv:1412.6858v5 (2015) Liang, J., Fadili, J., Peyre, G., Luke, R.: Activity identification and local linear convergence of Douglas–Rachford/ADMM under partial smoothness. arXiv:​1412.​6858v5 (2015)
29.
go back to reference Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)CrossRefMathSciNetMATH Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)CrossRefMathSciNetMATH
30.
go back to reference Mateos, G., Bazerque, J., Giannakis, G.: Distributed sparse linear regression. IEEE Trans. Signal Process. 58(10), 5262–5276 (2010)CrossRefMathSciNet Mateos, G., Bazerque, J., Giannakis, G.: Distributed sparse linear regression. IEEE Trans. Signal Process. 58(10), 5262–5276 (2010)CrossRefMathSciNet
31.
go back to reference Mendel, J., Burrus, C.: Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing. Springer, New York (1990)CrossRef Mendel, J., Burrus, C.: Maximum-Likelihood Deconvolution: A Journey into Model-Based Signal Processing. Springer, New York (1990)CrossRef
33.
go back to reference Rockafellar, R.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1997)MATH Rockafellar, R.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1997)MATH
34.
go back to reference Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)CrossRefMathSciNetMATH Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)CrossRefMathSciNetMATH
36.
go back to reference Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1–2), 250–278 (2011)CrossRefMathSciNetMATH Yang, J., Zhang, Y.: Alternating direction algorithms for \(\ell _1\)-problems in compressive sensing. SIAM J. Sci. Comput. 33(1–2), 250–278 (2011)CrossRefMathSciNetMATH
37.
go back to reference Zhang, X., Burger, M., Osher, S.: A unified primal–dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)CrossRefMathSciNetMATH Zhang, X., Burger, M., Osher, S.: A unified primal–dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)CrossRefMathSciNetMATH
38.
go back to reference Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)CrossRefMathSciNetMATH Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)CrossRefMathSciNetMATH
Metadata
Title
On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers
Authors
Wei Deng
Wotao Yin
Publication date
30-05-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2016
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-015-0048-x

Other articles of this Issue 3/2016

Journal of Scientific Computing 3/2016 Go to the issue

Premium Partner