Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 12/2018

21-11-2018

On the Hot Deformation Behavior of a Ni-Free Austenitic Stainless Steel Interstitially Alloyed with Low Nitrogen Content

Authors: H. Khorshidi, A. Kermanpur, M. C. Somani, A. Najafizadeh

Published in: Journal of Materials Engineering and Performance | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hot deformation behavior of a Ni-free, Fe-17Cr-12Mn-0.28N-0.06C (wt.%) austenitic stainless steel, hereinafter coded as FeCrMnN, was investigated using hot compression tests conducted under different deformation conditions comprising temperature and strain rate ranges of 800-1200 °C and 0.01-10 s−1, respectively. While the hot deformation at high strain rate and low temperatures (e.g., 10 s−1 and 800 or 900 °C) showed essentially dynamic recovery, resulting in a pancake-shaped microstructure, most of the other conditions exhibited occurrence of dynamic recrystallization (DRX). Increasing deformation temperature and decreasing strain rate showed a decrease in the critical stress and strain for initiating DRX. In general, DRX resulted in extensive microstructural reconstitution and grain refinement. For instance, hot deformation at 1000 °C/0.01 s−1 resulted in a fully recrystallized fine-grained microstructure with an average grain size of about 15 μm in comparison with the initial grain size of 60 µm. Increasing the temperature enhanced grain growth, but an increase in strain rate resulted in a finer grain structure. The amount of delta ferrite in the present steel varied under different conditions of deformation such that the lowest amount of delta ferrite (about 4.5%) was observed at 1000 °C. The activation energy of deformation (Qdef) for the present FeCrMnN steel with the initial grain size of 60 µm was estimated to be about 502 kJ/mol, which is higher than that of the conventional austenitic stainless steels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65, p 39–104CrossRef K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R Rep., 2009, 65, p 39–104CrossRef
2.
go back to reference D.W. Kim, Influence of Nitrogen-Induced Grain Refinement on Mechanical Properties of Nitrogen Alloyed Type 316LN Stainless Steel, J. Nucl. Mater., 2012, 420, p 473–478CrossRef D.W. Kim, Influence of Nitrogen-Induced Grain Refinement on Mechanical Properties of Nitrogen Alloyed Type 316LN Stainless Steel, J. Nucl. Mater., 2012, 420, p 473–478CrossRef
3.
go back to reference J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207, p 159–169CrossRef J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207, p 159–169CrossRef
4.
go back to reference H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, Effects of Processing and Manufacturing of High Nitrogen-Containing Stainless Steels on Their Mechanical, Corrosion and Wear Properties, J. Mater. Process. Technol., 2001, 117(3), p 424–430CrossRef H. Hänninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, Effects of Processing and Manufacturing of High Nitrogen-Containing Stainless Steels on Their Mechanical, Corrosion and Wear Properties, J. Mater. Process. Technol., 2001, 117(3), p 424–430CrossRef
5.
go back to reference H. Ha, T. Lee, C. Oh, and S. Kim, Effects of Combined Addition of Carbon and Nitrogen on Pitting Corrosion Behavior of Fe-18Cr-10Mn Alloys, Scripta Mater., 2009, 61, p 121–124CrossRef H. Ha, T. Lee, C. Oh, and S. Kim, Effects of Combined Addition of Carbon and Nitrogen on Pitting Corrosion Behavior of Fe-18Cr-10Mn Alloys, Scripta Mater., 2009, 61, p 121–124CrossRef
6.
go back to reference Z. Jiang, Z. Zhang, H. Li, Z. Li, and Q. Ma, Microstructural Evolution and Mechanical Properties of Aging High Nitrogen Austenitic Stainless Steels, Int. J. Miner. Metall. Mater., 2010, 17(6), p 729–736CrossRef Z. Jiang, Z. Zhang, H. Li, Z. Li, and Q. Ma, Microstructural Evolution and Mechanical Properties of Aging High Nitrogen Austenitic Stainless Steels, Int. J. Miner. Metall. Mater., 2010, 17(6), p 729–736CrossRef
7.
go back to reference M. Saucedo-Muñoz, Y. Watanabe, T. Shoji, and H. Takahashi, Effect of Microstructure Evolution on Fracture Toughness in Isothermally Aged Austenitic Stainless Steels for Cryogenic Applications, Cryogenics, 2000, 40(11), p 693–700CrossRef M. Saucedo-Muñoz, Y. Watanabe, T. Shoji, and H. Takahashi, Effect of Microstructure Evolution on Fracture Toughness in Isothermally Aged Austenitic Stainless Steels for Cryogenic Applications, Cryogenics, 2000, 40(11), p 693–700CrossRef
8.
go back to reference K. Yang and Y. Ren, Nickel-Free Austenitic Stainless Steels for Medical Applications, Sci. Technol. Adv. Mater., 2010, 11(1), p 014105CrossRef K. Yang and Y. Ren, Nickel-Free Austenitic Stainless Steels for Medical Applications, Sci. Technol. Adv. Mater., 2010, 11(1), p 014105CrossRef
9.
go back to reference Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103CrossRef Y. Han, G. Qiao, J. Sun, and D. Zou, A Comparative Study on Constitutive Relationship of As-Cast 904L Austenitic Stainless Steel During Hot Deformation Based on Arrhenius-Type and Artificial Neural Network Models, Comput. Mater. Sci., 2013, 67, p 93–103CrossRef
10.
go back to reference G. Dieter, H. Kuhn, and S. Semiatin, Handbook of Workability and Process Design, ASM International, Almere, 2003 G. Dieter, H. Kuhn, and S. Semiatin, Handbook of Workability and Process Design, ASM International, Almere, 2003
11.
go back to reference D. Banabic, H.J. Bunge, K. Pöhlandt, and A.E. Tekkaya, Formability of Metallic Materials : Plastic Anisotropy, Formability Testing, Forming Limits, Springer, New York, 2000CrossRef D. Banabic, H.J. Bunge, K. Pöhlandt, and A.E. Tekkaya, Formability of Metallic Materials : Plastic Anisotropy, Formability Testing, Forming Limits, Springer, New York, 2000CrossRef
12.
go back to reference N.D. Ryan, H.J. McQueen, and E. Evangelista, Dynamic Recovery and Strain Hardening in the Hot Deformation of Type 317 Stainless Steel, Mater. Sci. Eng., 1986, 81, p 259–272CrossRef N.D. Ryan, H.J. McQueen, and E. Evangelista, Dynamic Recovery and Strain Hardening in the Hot Deformation of Type 317 Stainless Steel, Mater. Sci. Eng., 1986, 81, p 259–272CrossRef
13.
go back to reference N.D. Ryan, H.J. McQueen, and J.J. Jonas, The Deformation Behavior of Types 304, 316, and 317 Austenitic Stainless Steels During Hot Torsion, Can. Metall. Q., 1983, 22(3), p 369–378CrossRef N.D. Ryan, H.J. McQueen, and J.J. Jonas, The Deformation Behavior of Types 304, 316, and 317 Austenitic Stainless Steels During Hot Torsion, Can. Metall. Q., 1983, 22(3), p 369–378CrossRef
14.
go back to reference N.D. Ryan and H.J. McQueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process. Technol., 1990, 21(2), p 177–199CrossRef N.D. Ryan and H.J. McQueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, J. Mater. Process. Technol., 1990, 21(2), p 177–199CrossRef
15.
go back to reference A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39, p 1359–1370CrossRef A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39, p 1359–1370CrossRef
16.
go back to reference H.J. McQueen and J.J. Jonas, Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanisms, J. Appl. Met. Work., 1984, 3(3), p 233–241CrossRef H.J. McQueen and J.J. Jonas, Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanisms, J. Appl. Met. Work., 1984, 3(3), p 233–241CrossRef
17.
go back to reference H.J. McQueen and C.A.C. Imbert, Dynamic Recrystallization: Plasticity Enhancing Structural Development, J. Alloys Compd., 2004, 378, p 35–43CrossRef H.J. McQueen and C.A.C. Imbert, Dynamic Recrystallization: Plasticity Enhancing Structural Development, J. Alloys Compd., 2004, 378, p 35–43CrossRef
18.
go back to reference F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004 F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004
19.
go back to reference T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRef
20.
go back to reference J. Moon, T. Lee, J. Shin, and J. Lee, Hot Working Behavior of a Nitrogen-Alloyed Fe-18Mn-18Cr-N Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 594, p 302–308CrossRef J. Moon, T. Lee, J. Shin, and J. Lee, Hot Working Behavior of a Nitrogen-Alloyed Fe-18Mn-18Cr-N Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 594, p 302–308CrossRef
21.
go back to reference M. Tendo, Y. Tadokoro, K. Suetsugu, and T. Nakazawa, Effects of Nitrogen, Niobium and Molybdenum on Strengthening of Austenitic Stainless Steel Produced by Thermo-Mechanical Control Process, ISIJ Int., 2001, 41, p 262–267CrossRef M. Tendo, Y. Tadokoro, K. Suetsugu, and T. Nakazawa, Effects of Nitrogen, Niobium and Molybdenum on Strengthening of Austenitic Stainless Steel Produced by Thermo-Mechanical Control Process, ISIJ Int., 2001, 41, p 262–267CrossRef
22.
go back to reference M. Guo, Z. Wang, Z. Zhou, S. Sun, and W. Fu, Effect of Nitrogen Content on Hot Deformation Behavior and Grain Growth in Nuclear Grade 316LN Stainless Steel, Adv. Mater. Sci. Eng., 2015, 2015, p 427945 M. Guo, Z. Wang, Z. Zhou, S. Sun, and W. Fu, Effect of Nitrogen Content on Hot Deformation Behavior and Grain Growth in Nuclear Grade 316LN Stainless Steel, Adv. Mater. Sci. Eng., 2015, 2015, p 427945
23.
go back to reference S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Influence of Strain Rate and State of Stress on the Formation of Ferrite in Stainless Steel Type AISI, 304 During Hot Working, Mater. Lett., 1996, 26, p 161–165CrossRef S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, Influence of Strain Rate and State of Stress on the Formation of Ferrite in Stainless Steel Type AISI, 304 During Hot Working, Mater. Lett., 1996, 26, p 161–165CrossRef
24.
go back to reference R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152, p 136–143CrossRef R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152, p 136–143CrossRef
25.
go back to reference D. Shahriari, M.H. Sadeghi, and K.T. Kim, Effects of Lubricant and Temperature on Friction Coefficient During Hot Forging of Nimonic 115 Superalloy, Kovove Mater., 2011, 49, p 375–383 D. Shahriari, M.H. Sadeghi, and K.T. Kim, Effects of Lubricant and Temperature on Friction Coefficient During Hot Forging of Nimonic 115 Superalloy, Kovove Mater., 2011, 49, p 375–383
26.
go back to reference H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40, p 2950–2958CrossRef H. Mirzadeh, A. Najafizadeh, and M. Moazeny, Flow Curve Analysis of 17-4 PH Stainless Steel Under Hot Compression Test, Metall. Mater. Trans. A, 2009, 40, p 2950–2958CrossRef
27.
go back to reference H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882CrossRef H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh, Hot Deformation Behavior of a Medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 2011, 528, p 3876–3882CrossRef
28.
go back to reference A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684CrossRef A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684CrossRef
29.
go back to reference H. Fu-xiang, W. Xin-hua, Z. Jiong-ming, J. Chen-xi, F. Yuan, and Y. Yan, Situ Observation of Solidification Process of AISI, 304 Austenitic Stainless Steel, J. Alloys Compd., 2008, 15, p 78–82 H. Fu-xiang, W. Xin-hua, Z. Jiong-ming, J. Chen-xi, F. Yuan, and Y. Yan, Situ Observation of Solidification Process of AISI, 304 Austenitic Stainless Steel, J. Alloys Compd., 2008, 15, p 78–82
30.
go back to reference A. Dehghan-Manshadi and P.D. Hodgson, Effect of δ-Ferrite Co-existence on Hot Deformation and Recrystallization of Austenite, J. Mater. Sci., 2008, 43, p 6272–6277CrossRef A. Dehghan-Manshadi and P.D. Hodgson, Effect of δ-Ferrite Co-existence on Hot Deformation and Recrystallization of Austenite, J. Mater. Sci., 2008, 43, p 6272–6277CrossRef
31.
go back to reference J.J. Jonas, C.M. Sellars, and W. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14(1), p 1–24 J.J. Jonas, C.M. Sellars, and W. Tegart, Strength and Structure Under Hot-Working Conditions, Metall. Rev., 1969, 14(1), p 1–24
32.
go back to reference R. Nkhoma, C. Siyasiya, and W. Stumpf, Hot Workability of AISI, 321 and AISI, 304 Austenitic Stainless Steels, J. Alloys Compd., 2014, 595, p 103–112CrossRef R. Nkhoma, C. Siyasiya, and W. Stumpf, Hot Workability of AISI, 321 and AISI, 304 Austenitic Stainless Steels, J. Alloys Compd., 2014, 595, p 103–112CrossRef
33.
go back to reference Z. Wang, W. Fu, S. Sun, H. Li, Z. Lv, and D. Zhao, Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel During Hot Deformation, Metall. Mater. Trans. A, 2010, 41, p 1025–1032CrossRef Z. Wang, W. Fu, S. Sun, H. Li, Z. Lv, and D. Zhao, Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel During Hot Deformation, Metall. Mater. Trans. A, 2010, 41, p 1025–1032CrossRef
34.
go back to reference B. Gan, M. Zhang, H. Li, Y. Yao, and L. Li, A Modified Constitutive Model and Dynamic Recrystallization Behavior of High-N Mn18Cr18 Alloy, Steel Res. Int., 2017, 87, p 1–14 B. Gan, M. Zhang, H. Li, Y. Yao, and L. Li, A Modified Constitutive Model and Dynamic Recrystallization Behavior of High-N Mn18Cr18 Alloy, Steel Res. Int., 2017, 87, p 1–14
35.
go back to reference H. Li, W. Jiao, H. Feng, X. Li, Z. Jiang, G. Li, L. Wang, G. Fan, and P. Han, Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel Under Hot Compression, Metals, 2016, 6, p 223CrossRef H. Li, W. Jiao, H. Feng, X. Li, Z. Jiang, G. Li, L. Wang, G. Fan, and P. Han, Deformation Characteristic and Constitutive Modeling of 2707 Hyper Duplex Stainless Steel Under Hot Compression, Metals, 2016, 6, p 223CrossRef
36.
go back to reference T. Xi, C. Yang, M. Babar Shahzad, and K. Yang, Study on the Processing Map and Hot Deformation Behavior of a Cu-Bearing 317LN Austenitic Stainless Steel, Mater. Des., 2015, 87, p 303–312CrossRef T. Xi, C. Yang, M. Babar Shahzad, and K. Yang, Study on the Processing Map and Hot Deformation Behavior of a Cu-Bearing 317LN Austenitic Stainless Steel, Mater. Des., 2015, 87, p 303–312CrossRef
37.
go back to reference H. Feng, Z. Jiang, H. Li, W. Jiao, X. Li, H. Zhu, S. Zhang, B. Zhang, and M. Cai, Hot Deformation Behavior and Microstructural Evolution of High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N, Steel Res. Int., 2017, 87, p 1700149CrossRef H. Feng, Z. Jiang, H. Li, W. Jiao, X. Li, H. Zhu, S. Zhang, B. Zhang, and M. Cai, Hot Deformation Behavior and Microstructural Evolution of High Nitrogen Martensitic Stainless Steel 30Cr15Mo1N, Steel Res. Int., 2017, 87, p 1700149CrossRef
38.
go back to reference V. Gavriljuk, Y. Petrov, and B. Shanina, Effect of Nitrogen on the Electron Structure and Stacking Fault Energy in Austenitic Steels, Scripta Mater., 2006, 55, p 537–540CrossRef V. Gavriljuk, Y. Petrov, and B. Shanina, Effect of Nitrogen on the Electron Structure and Stacking Fault Energy in Austenitic Steels, Scripta Mater., 2006, 55, p 537–540CrossRef
39.
go back to reference I.A. Yakubtsov, A. Ariapour, and D.D. Perovic, Effect of Nitrogen on Stacking Fault Energy, Acta Mater., 1999, 47, p 1271–1279CrossRef I.A. Yakubtsov, A. Ariapour, and D.D. Perovic, Effect of Nitrogen on Stacking Fault Energy, Acta Mater., 1999, 47, p 1271–1279CrossRef
40.
go back to reference L. Yu-Ping, Z. Yong, R. Fan, C. Hai-Tao, W. Yu-Qing, and S. Jie, Hot Working of High Nitrogen Austenitic Stainless Steel, J. Iron Steel Res., 2010, 17(10), p 45–49CrossRef L. Yu-Ping, Z. Yong, R. Fan, C. Hai-Tao, W. Yu-Qing, and S. Jie, Hot Working of High Nitrogen Austenitic Stainless Steel, J. Iron Steel Res., 2010, 17(10), p 45–49CrossRef
41.
go back to reference A. Sarkar and J.K. Chakravartty, Investigation of Progress in Dynamic Recrystallization in Two Austenitic Stainless Steels Exhibiting Flow Softening, J. Metall. Eng., 2013, 2, p 130–136 A. Sarkar and J.K. Chakravartty, Investigation of Progress in Dynamic Recrystallization in Two Austenitic Stainless Steels Exhibiting Flow Softening, J. Metall. Eng., 2013, 2, p 130–136
42.
go back to reference M. Jafari and A. Najafizadeh, Comparison Between the Methods of Determining the Critical Stress for Initiation of Dynamic Recrystallization in 316 Stainless Steel, J. Mater. Sci. Technol., 2008, 24, p 840–844 M. Jafari and A. Najafizadeh, Comparison Between the Methods of Determining the Critical Stress for Initiation of Dynamic Recrystallization in 316 Stainless Steel, J. Mater. Sci. Technol., 2008, 24, p 840–844
43.
go back to reference S. Kim and Y. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113CrossRef S. Kim and Y. Yoo, Dynamic Recrystallization Behavior of AISI, 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113CrossRef
Metadata
Title
On the Hot Deformation Behavior of a Ni-Free Austenitic Stainless Steel Interstitially Alloyed with Low Nitrogen Content
Authors
H. Khorshidi
A. Kermanpur
M. C. Somani
A. Najafizadeh
Publication date
21-11-2018
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 12/2018
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3766-z

Other articles of this Issue 12/2018

Journal of Materials Engineering and Performance 12/2018 Go to the issue

Premium Partners