On the Impact of Network Data Balancing in Cybersecurity Applications | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

On the Impact of Network Data Balancing in Cybersecurity Applications

Authors : Marek Pawlicki, Michał Choraś, Rafał Kozik, Witold Hołubowicz

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

Machine learning methods are now widely used to detect a wide range of cyberattacks. Nevertheless, the commonly used algorithms come with challenges of their own - one of them lies in network dataset characteristics. The dataset should be well-balanced in terms of the number of malicious data samples vs. benign traffic samples to achieve adequate results. When the data is not balanced, numerous machine learning approaches show a tendency to classify minority class samples as majority class samples. Since usually in network traffic data there are significantly fewer malicious samples than benign samples, in this work the problem of learning from imbalanced network traffic data in the cybersecurity domain is addressed. A number of balancing approaches is evaluated along with their impact on different machine learning algorithms.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Parekh, G., et al.: Identifying core concepts of cybersecurity: results of two Delphi processes. IEEE Trans. Educ. 61(1), 11–20 (2018) MathSciNetCrossRef Parekh, G., et al.: Identifying core concepts of cybersecurity: results of two Delphi processes. IEEE Trans. Educ. 61(1), 11–20 (2018) MathSciNetCrossRef
2.
go back to reference Tabasum, A., Safi, Z., AlKhater, W., Shikfa, A.: Cybersecurity issues in implanted medical devices. In: International Conference on Computer and Applications (ICCA), pp. 1–9, August 2018 Tabasum, A., Safi, Z., AlKhater, W., Shikfa, A.: Cybersecurity issues in implanted medical devices. In: International Conference on Computer and Applications (ICCA), pp. 1–9, August 2018
3.
go back to reference Bastos, D., Shackleton, M., El-Moussa, F.: Internet of things: a survey of technologies and security risks in smart home and city environments. In: Living in the Internet of Things: Cybersecurity of the IoT - 2018, pp. 1–7 (2018) Bastos, D., Shackleton, M., El-Moussa, F.: Internet of things: a survey of technologies and security risks in smart home and city environments. In: Living in the Internet of Things: Cybersecurity of the IoT - 2018, pp. 1–7 (2018)
4.
go back to reference Kozik, R., Choraś, M., Ficco, M., Palmieri, F.: A scalable distributed machine learning approach for attack detection in edge computing environments. J. Parallel Distrib. Comput. 119, 18–26 (2018) CrossRef Kozik, R., Choraś, M., Ficco, M., Palmieri, F.: A scalable distributed machine learning approach for attack detection in edge computing environments. J. Parallel Distrib. Comput. 119, 18–26 (2018) CrossRef
5.
go back to reference Sewak, M., Sahay, S.K., Rathore, H.: Comparison of deep learning and the classical machine learning algorithm for the malware detection. In: 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 293–296, June 2018 Sewak, M., Sahay, S.K., Rathore, H.: Comparison of deep learning and the classical machine learning algorithm for the malware detection. In: 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 293–296, June 2018
6.
go back to reference Choraś, M., Kozik, R.: Machine learning techniques applied to detect cyber attacks on web applications. Logic J. IGPL 23(1), 45–56 (2015) MathSciNetCrossRef Choraś, M., Kozik, R.: Machine learning techniques applied to detect cyber attacks on web applications. Logic J. IGPL 23(1), 45–56 (2015) MathSciNetCrossRef
7.
go back to reference Özkan, K., Işı, Ş., Kartal, Y.: Evaluation of convolutional neural network features for malware detection. In: 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–5, March 2018 Özkan, K., Işı, Ş., Kartal, Y.: Evaluation of convolutional neural network features for malware detection. In: 6th International Symposium on Digital Forensic and Security (ISDFS), pp. 1–5, March 2018
8.
go back to reference Nguyen, K.D.T., Tuan, T.M., Le, S.H., Viet, A.P., Ogawa, M., Minh, N.L.: Comparison of three deep learning-based approaches for IoT malware detection. In: 10th International Conference on Knowledge and Systems Engineering (KSE), pp. 382–388, November 2018 Nguyen, K.D.T., Tuan, T.M., Le, S.H., Viet, A.P., Ogawa, M., Minh, N.L.: Comparison of three deep learning-based approaches for IoT malware detection. In: 10th International Conference on Knowledge and Systems Engineering (KSE), pp. 382–388, November 2018
9.
go back to reference Wang, Y., Shen, Y., Zhang, G.: Research on intrusion detection model using ensemble learning methods. In: 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 422–425, August 2016 Wang, Y., Shen, Y., Zhang, G.: Research on intrusion detection model using ensemble learning methods. In: 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 422–425, August 2016
10.
go back to reference Gautam, R.K.S., Doegar, E.A.: An ensemble approach for intrusion detection system using machine learning algorithms. In: 8th International Conference on Cloud Computing, Data Science Engineering (Confluence), pp. 14–15, January 2018 Gautam, R.K.S., Doegar, E.A.: An ensemble approach for intrusion detection system using machine learning algorithms. In: 8th International Conference on Cloud Computing, Data Science Engineering (Confluence), pp. 14–15, January 2018
11.
go back to reference Kunal, Dua, M.: Machine learning approach to IDS: a comprehensive review. In: 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 117–121, June 2019 Kunal, Dua, M.: Machine learning approach to IDS: a comprehensive review. In: 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 117–121, June 2019
13.
go back to reference Sonawane, H.A., Pattewar, T.M.: A comparative performance evaluation of intrusion detection based on neural network and PCA. In: International Conference on Communications and Signal Processing (ICCSP), pp. 0841–0845, April 2015 Sonawane, H.A., Pattewar, T.M.: A comparative performance evaluation of intrusion detection based on neural network and PCA. In: International Conference on Communications and Signal Processing (ICCSP), pp. 0841–0845, April 2015
14.
17.
go back to reference Zhang, J., Mani, I.: KNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of the ICML 2003 Workshop on Learning from Imbalanced Datasets (2003) Zhang, J., Mani, I.: KNN approach to unbalanced data distributions: a case study involving information extraction. In: Proceedings of the ICML 2003 Workshop on Learning from Imbalanced Datasets (2003)
18.
20.
go back to reference Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: Proceedings of the 4th International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 108–116. INSTICC, SciTePress (2018) Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: Proceedings of the 4th International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 108–116. INSTICC, SciTePress (2018)
21.
go back to reference Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 20th International Conference on Pattern Recognition, pp. 3121–3124 (2010) Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 20th International Conference on Pattern Recognition, pp. 3121–3124 (2010)
Metadata
Title
On the Impact of Network Data Balancing in Cybersecurity Applications
Authors
Marek Pawlicki
Michał Choraś
Rafał Kozik
Witold Hołubowicz
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_15