Skip to main content
Top

2024 | OriginalPaper | Chapter

On the Influence of Structural Attributes for Transferring Knowledge in Population-Based Structural Health Monitoring

Authors : Giulia Delo, Daniel S. Brennan, Cecilia Surace, Keith Worden

Published in: Special Topics in Structural Dynamics & Experimental Techniques, Vol. 5

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The recently proposed theory of Population-Based Structural Health Monitoring (PBSHM) aims at improving diagnostic inferences, by sharing damage-state knowledge across a population of structures via transfer-learning algorithms—specifically domain adaptation. Before applying these algorithms, the similarity between structures, or substructures, should be evaluated. This assessment helps prevent negative transfer, ensuring better performance and higher robustness of data-based SHM.
When structures are sufficiently similar, different transfer-learning strategies can be applied, according to the original features and the specific case study. In this framework, structural attributes play a crucial role, especially for heterogeneous populations in which the main differences can be caused by material properties, geometry, or dimensions. Therefore, investigating how to consider the influence of these properties in distance metrics became necessary, and new similarity metrics have been adopted to focus on geometric features and dimensions. However, to gain a comprehensive understanding of attribute relevance and to address it at the similarity-evaluation phase, it is necessary to evaluate the performance of transfer-learning algorithms as these structural features vary.
The present work extends this research by examining the effect of material and dimension attributes on the performance of a domain-adaptation method—the Transfer Component Analysis (TCA). This analysis is applied to an experimental population of laboratory-scale aircraft, comprising structures with different materials and dimensions, and similar topology. A confusion matrix is employed to compare the findings and show how these properties can influence the transfer-learning performance, especially for localised damage, thus highlighting the importance of their evaluation in the context of PBSHM.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bull, L.A., Gardner, P.A., Gosliga, J., Rogers, T.J., Dervilis, N., Cross, E.J., Papatheou, E., Maguire, A.E., Campos, C., Worden, K.: Foundations of population-based SHM, part I: Homogeneous populations and forms. Mech. Syst. Signal Process. 148, 107141 (2021)CrossRef Bull, L.A., Gardner, P.A., Gosliga, J., Rogers, T.J., Dervilis, N., Cross, E.J., Papatheou, E., Maguire, A.E., Campos, C., Worden, K.: Foundations of population-based SHM, part I: Homogeneous populations and forms. Mech. Syst. Signal Process. 148, 107141 (2021)CrossRef
2.
go back to reference Gosliga, J., Gardner, P.A., Bull, L.A., Dervilis, N., Worden, K.: Foundations of population-based SHM, part II: Heterogeneous populations–graphs, networks, and communities. Mech. Syst. Signal Process. 148, 107144 (2021)CrossRef Gosliga, J., Gardner, P.A., Bull, L.A., Dervilis, N., Worden, K.: Foundations of population-based SHM, part II: Heterogeneous populations–graphs, networks, and communities. Mech. Syst. Signal Process. 148, 107144 (2021)CrossRef
3.
go back to reference Gardner, P.A., Bull, L.A., Gosliga, J., Dervilis, N., Worden, K.: Foundations of population-based SHM, part III: Heterogeneous populations–mapping and transfer. Mech. Syst. Process. 149, 107142 (2021)CrossRef Gardner, P.A., Bull, L.A., Gosliga, J., Dervilis, N., Worden, K.: Foundations of population-based SHM, part III: Heterogeneous populations–mapping and transfer. Mech. Syst. Process. 149, 107142 (2021)CrossRef
4.
go back to reference Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: International Conference on Machine Learning, pp. 3835–3845. PMLR (2019) Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for learning the similarity of graph structured objects. In: International Conference on Machine Learning, pp. 3835–3845. PMLR (2019)
5.
go back to reference Brennan, D.S., Rogers, T.J., Cross, E.J., Worden, K.: On quantifying the similarity of structures via a graph neural network for population-based structural health monitoring. In: Proceedings of the 30th International Conference on Noise and Vibration Engineering, ISMA 2022. KU Leuven Department of Mechanical Engineering (2022) Brennan, D.S., Rogers, T.J., Cross, E.J., Worden, K.: On quantifying the similarity of structures via a graph neural network for population-based structural health monitoring. In: Proceedings of the 30th International Conference on Noise and Vibration Engineering, ISMA 2022. KU Leuven Department of Mechanical Engineering (2022)
6.
go back to reference Brennan, D.S., Rogers, T.J., Cross, E.J., Worden, K.: Calculating structure similarity via a graph neural network in population-based structural health monitoring: Part II. In: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 (2022) Brennan, D.S., Rogers, T.J., Cross, E.J., Worden, K.: Calculating structure similarity via a graph neural network in population-based structural health monitoring: Part II. In: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 (2022)
7.
go back to reference Delo, G., Surace, C., Worden, K., Brennan, D.S.: On the influence of structural attributes for assessing similarity in population-based structural health monitoring. In: Proceedings of the 14th International Workshop on Structural Health Monitoring 2023: Designing SHM for Sustainability, Maintainability, and Reliability. DEStech Publications, Pennsylvania (2023) Delo, G., Surace, C., Worden, K., Brennan, D.S.: On the influence of structural attributes for assessing similarity in population-based structural health monitoring. In: Proceedings of the 14th International Workshop on Structural Health Monitoring 2023: Designing SHM for Sustainability, Maintainability, and Reliability. DEStech Publications, Pennsylvania (2023)
8.
go back to reference Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2010)CrossRef Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2010)CrossRef
9.
go back to reference Bull, L., Gardner, P., Dervilis, N., Papatheou, E., Haywood-Alexander, M., Mills, R., Worden, K.: On the transfer of damage detectors between structures: an experimental case study. J. Sound Vib. 501, 116072 (2021)CrossRef Bull, L., Gardner, P., Dervilis, N., Papatheou, E., Haywood-Alexander, M., Mills, R., Worden, K.: On the transfer of damage detectors between structures: an experimental case study. J. Sound Vib. 501, 116072 (2021)CrossRef
10.
go back to reference Worden, K., Manson, G.: The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1851), 515–537 (2007)CrossRef Worden, K., Manson, G.: The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1851), 515–537 (2007)CrossRef
11.
go back to reference Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Hoboken (2012)CrossRef Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Hoboken (2012)CrossRef
12.
go back to reference Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Eng. 22(10), 1345–1359 (2009)CrossRef Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Eng. 22(10), 1345–1359 (2009)CrossRef
13.
go back to reference Worden, K., Manson, G., Fieller, N.R.: Damage detection using outlier analysis. J. Sound Vib. 229(3), 647–667 (2000)CrossRef Worden, K., Manson, G., Fieller, N.R.: Damage detection using outlier analysis. J. Sound Vib. 229(3), 647–667 (2000)CrossRef
14.
go back to reference Balmes, E., Wright, J.R.: Garteur group on ground vibration testing: Results from the test of a single structure by 12 laboratories in Europe. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 80401, pp. V01AT03A004. American Society of Mechanical Engineers, New York City (1997) Balmes, E., Wright, J.R.: Garteur group on ground vibration testing: Results from the test of a single structure by 12 laboratories in Europe. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 80401, pp. V01AT03A004. American Society of Mechanical Engineers, New York City (1997)
15.
go back to reference Delo, G., Mattone, M., Surace, C., Worden, K.: Novelty detection across a small population of real structures: A negative-selection approach. In: XII International Conference on Structural Dynamics (2023) Delo, G., Mattone, M., Surace, C., Worden, K.: Novelty detection across a small population of real structures: A negative-selection approach. In: XII International Conference on Structural Dynamics (2023)
Metadata
Title
On the Influence of Structural Attributes for Transferring Knowledge in Population-Based Structural Health Monitoring
Authors
Giulia Delo
Daniel S. Brennan
Cecilia Surace
Keith Worden
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-68901-7_9