Skip to main content
Top
Published in: International Journal of Material Forming 6/2019

30-07-2019 | Review

On the inverse identification of Lankford coefficients using geometrical changes under quasi-biaxial loading

Authors: Matthias Graser, Matthias Lenzen, Marion Merklein

Published in: International Journal of Material Forming | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Finite element simulation has become an important tool of process and production design in various fields, especially in the automotive industry. The calculation of forming processes in the early concept phase of new cars allows virtual adaptions, which can reduce costs of later phases in the product development significantly. Therefore, the precise characterization and modelling of the material behavior is necessary to ensure a robust and reliable numerical process design. The mechanical properties of numerous materials are highly influenced by the rolling or extrusion direction in the production process. This necessitates the characterization of materials in different loading directions. However, depending on the dimensional aspects of the semi-finished product, the manufacturing of specimens can be challenging or even impossible. Thus, in this investigation, an innovative, indirect approach for the identification of the Lankford coefficient in transversal direction is presented. Based on numerical and experimental data of layer compression tests the Lankford coefficient is determined by inverse modelling of the resulting specimen contour. Due to the characteristics of the layer compression test, it can even be used for semi-finished products with small transversal dimensions like extruded profiles. The presented methodology is on the one hand verified by conventional uniaxial tensile tests for aluminum as well as steel blank material. On the other hand it is used to determine Lankford coefficients for an aluminum extrusion hollow profile and the inversely identified material model is validated by comparison of strain distributions of experimental and numerical square tube bending tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aegerter J, Keller S, Berk H (2017) Miniaturisierung des Zugversuchs zwecks Ermittlung lokaler Bauteileigenschaften - Versuchstechnik und Vergleich mit Ergebnissen an Standardproben. Tagung Werkstoffprüfung 2017 - Fortschritte in der Werkstoffprüfung für Forschung und Praxis 117–122 Aegerter J, Keller S, Berk H (2017) Miniaturisierung des Zugversuchs zwecks Ermittlung lokaler Bauteileigenschaften - Versuchstechnik und Vergleich mit Ergebnissen an Standardproben. Tagung Werkstoffprüfung 2017 - Fortschritte in der Werkstoffprüfung für Forschung und Praxis 117–122
2.
go back to reference Konopik P, Farahnak P, Rund M, Dzugan J, Rzepa S (2019) Applicability of miniature tensile test in the automotive sector. IOP Conf. Ser.: mater. Sci Eng 461:1–6 Konopik P, Farahnak P, Rund M, Dzugan J, Rzepa S (2019) Applicability of miniature tensile test in the automotive sector. IOP Conf. Ser.: mater. Sci Eng 461:1–6
3.
go back to reference Suttner S, Merklein M (2016) Influence of specimen size and sheet thickness on the material behavior of AZ31B under uniaxial tension. IOP Conf. Ser.: mater. Sci Eng 159:1–8 Suttner S, Merklein M (2016) Influence of specimen size and sheet thickness on the material behavior of AZ31B under uniaxial tension. IOP Conf. Ser.: mater. Sci Eng 159:1–8
4.
go back to reference Kohyama A, Hamada K, Matsui H (1991) Specimen size effects on tensile properties of neutron-irradiated steels. J Nucl Mater 179-181:417–420CrossRef Kohyama A, Hamada K, Matsui H (1991) Specimen size effects on tensile properties of neutron-irradiated steels. J Nucl Mater 179-181:417–420CrossRef
5.
go back to reference Kanni Raj A (2010) Calculation of Lankford coefficient from orientation distribution function and modelling of forming limit diagram using Marcniak-Kuczynski hypothesis of geometric instability. Indian J Eng Mater Sci:256–264 Kanni Raj A (2010) Calculation of Lankford coefficient from orientation distribution function and modelling of forming limit diagram using Marcniak-Kuczynski hypothesis of geometric instability. Indian J Eng Mater Sci:256–264
6.
go back to reference Hammami W, Delannay L, Habraken AM, Duchêne L (2009) Crystal plasticity prediction of Lankford coefficients using the MULTISITE model: influence of the critical resolved shear stresses. Int J Mat For 65-68CrossRef Hammami W, Delannay L, Habraken AM, Duchêne L (2009) Crystal plasticity prediction of Lankford coefficients using the MULTISITE model: influence of the critical resolved shear stresses. Int J Mat For 65-68CrossRef
7.
go back to reference Butz A, Pagenkopf J, Baiker M, Helm D (2016) The concept of virtual material testing and its application to sheet metal forming simulations. J Phys Conf Ser 734:1–4CrossRef Butz A, Pagenkopf J, Baiker M, Helm D (2016) The concept of virtual material testing and its application to sheet metal forming simulations. J Phys Conf Ser 734:1–4CrossRef
8.
go back to reference Yoon J, Dick R, Barlat F (2008) Analytical approach to predict anisotropic material properties from cup drawings. Int J Mat Form 301-304CrossRef Yoon J, Dick R, Barlat F (2008) Analytical approach to predict anisotropic material properties from cup drawings. Int J Mat Form 301-304CrossRef
9.
go back to reference Gösling M (2017) A method to determine lankford coefficients (r-values) for ultra high strength low alloy (UHSLA) steels. J Phys Conf Ser 896:1–6CrossRef Gösling M (2017) A method to determine lankford coefficients (r-values) for ultra high strength low alloy (UHSLA) steels. J Phys Conf Ser 896:1–6CrossRef
10.
go back to reference Chamekh A, Ben Hadj Salah H, Hambli R (2009) Inverse technique identification of material parameters using finite element and neural network computation. Int J Adv Manuf Technol 173-179CrossRef Chamekh A, Ben Hadj Salah H, Hambli R (2009) Inverse technique identification of material parameters using finite element and neural network computation. Int J Adv Manuf Technol 173-179CrossRef
11.
go back to reference Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2008) Identification of mechanical material behavior through inverse modeling and DIC. Exp Mech 421-433CrossRef Cooreman S, Lecompte D, Sol H, Vantomme J, Debruyne D (2008) Identification of mechanical material behavior through inverse modeling and DIC. Exp Mech 421-433CrossRef
12.
go back to reference Güner A, Soyarslan C, Brosius A, Tekkaya AE (2012) Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for Yld2000-2D yield function. Int J Solids Struct 49(25):3517–3527CrossRef Güner A, Soyarslan C, Brosius A, Tekkaya AE (2012) Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for Yld2000-2D yield function. Int J Solids Struct 49(25):3517–3527CrossRef
13.
go back to reference Merklein M, Kuppert A (2009) A method for the layer compression test considering the anisotropic material behavior. Int J Mater Form 2(S1):483CrossRef Merklein M, Kuppert A (2009) A method for the layer compression test considering the anisotropic material behavior. Int J Mater Form 2(S1):483CrossRef
14.
go back to reference Tuninetti V, Gilles G, Péron-Lührs V, Habraken A (2012) Compression test for metal characterization using digital image correlation and inverse modeling. Procedia IUTAM 4:206–214CrossRef Tuninetti V, Gilles G, Péron-Lührs V, Habraken A (2012) Compression test for metal characterization using digital image correlation and inverse modeling. Procedia IUTAM 4:206–214CrossRef
15.
go back to reference Lankford WT, Snyder SC, Bausher JA (1950) New criteria for predicting the press performance of deep drawing sheets. Trans ASM 42:1197–1205 Lankford WT, Snyder SC, Bausher JA (1950) New criteria for predicting the press performance of deep drawing sheets. Trans ASM 42:1197–1205
16.
go back to reference Goedel V, Merklein M (2011) Variation of deep drawing steel grades’ properties in dependency of the stress state and its impact on FEA. Int J Mater Form 4(2):183–192CrossRef Goedel V, Merklein M (2011) Variation of deep drawing steel grades’ properties in dependency of the stress state and its impact on FEA. Int J Mater Form 4(2):183–192CrossRef
Metadata
Title
On the inverse identification of Lankford coefficients using geometrical changes under quasi-biaxial loading
Authors
Matthias Graser
Matthias Lenzen
Marion Merklein
Publication date
30-07-2019
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 6/2019
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-019-01498-z

Other articles of this Issue 6/2019

International Journal of Material Forming 6/2019 Go to the issue

Premium Partners