Skip to main content
Top
Published in: Archive of Applied Mechanics 3/2018

27-10-2017 | Original

On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems

Authors: Carmine M. Pappalardo, Domenico Guida

Published in: Archive of Applied Mechanics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper deals with the Lagrange multipliers corresponding to the intrinsic constraint equations of rigid multibody mechanical systems. The intrinsic constraint equations are algebraic equations that are associated with nonminimal sets of orientation parameters employed for the kinematic representation of large finite rotations. Two coordinate formulations are analyzed in this investigation, namely the reference point coordinate formulation (RPCF) with Euler parameters and the natural absolute coordinate formulation (NACF). While the RPCF with Euler parameters employs the four components of a unit quaternion as rotational coordinates, the NACF directly uses the orthonormal set of nine direction cosines for describing the orientation of a rigid body in the three-dimensional space. In the multibody approaches based on the RPCF with Euler parameters and on the NACF, the use of a nonminimal set of rotational coordinates facilitates a general and systematic formulation of the differential–algebraic equations of motion. Considering the basic equations of classical mechanics, the fundamental problem of constrained motion is formalized and solved in this paper by using a special form of the Udwadia–Kalaba method. By doing so, the Udwadia–Kalaba equations are employed for obtaining closed-form analytical solutions for the Lagrange multipliers associated with the intrinsic constraint equations that appear in the differential–algebraic dynamic equations developed by using the RPCF with Euler parameters and the NACF multibody approaches. Two simple numerical examples support the analytical results found in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheli, F., Pennestri, E.: Cinematica e Dinamica dei Sistemi Multibody, vol. 1. Casa Editrice Ambrosiana, Milano (2006) Cheli, F., Pennestri, E.: Cinematica e Dinamica dei Sistemi Multibody, vol. 1. Casa Editrice Ambrosiana, Milano (2006)
2.
go back to reference Cheli, F., Pennestri, E.: Cinematica e Dinamica dei Sistemi Multibody, vol. 2. Casa Editrice Ambrosiana, Milano (2006) Cheli, F., Pennestri, E.: Cinematica e Dinamica dei Sistemi Multibody, vol. 2. Casa Editrice Ambrosiana, Milano (2006)
3.
go back to reference Wittenburg, J.: Dynamics of Multibody Systems, 2nd edn. Springer, Berlin (2007)MATH Wittenburg, J.: Dynamics of Multibody Systems, 2nd edn. Springer, Berlin (2007)MATH
4.
go back to reference Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (2012)MATH Roberson, R.E., Schwertassek, R.: Dynamics of Multibody Systems. Springer, Berlin (2012)MATH
5.
6.
go back to reference Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New-York (2011). Reprint Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New-York (2011). Reprint
7.
go back to reference Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems Volume I: Basic Methods. Allyn and Bacon, Needham (1989) Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems Volume I: Basic Methods. Allyn and Bacon, Needham (1989)
8.
go back to reference Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988) Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)
9.
go back to reference Abagnale, C., Cardone, M., Iodice, P., Strano, S., Terzo, M., Vorraro, G.: Theoretical and experimental evaluation of a chain strength measurement system for pedelecs. Eng. Lett. 22(3), 102–108 (2014) Abagnale, C., Cardone, M., Iodice, P., Strano, S., Terzo, M., Vorraro, G.: Theoretical and experimental evaluation of a chain strength measurement system for pedelecs. Eng. Lett. 22(3), 102–108 (2014)
10.
go back to reference Abagnale, C., Cardone, M., Iodice, P., Strano, S., Terzo, M., Vorraro, G.: Power requirements and environmental impact of a pedelec. A case study based on real-life applications. Environ. Impact Assess. Rev. 53(7), 1–7 (2015)CrossRef Abagnale, C., Cardone, M., Iodice, P., Strano, S., Terzo, M., Vorraro, G.: Power requirements and environmental impact of a pedelec. A case study based on real-life applications. Environ. Impact Assess. Rev. 53(7), 1–7 (2015)CrossRef
11.
go back to reference Iodice, P., Abagnale, C., Cardone, M., Strano, S., Terzo, M., Vorraro, G.: Performance evaluation and environmental analysis of an electrically assisted bicycle under real driving conditions. Proceedings of the ASME 12th Biennial Conference on Engineering Systems Design and Analysis (ESDA2014), vol. 1, Copenhagen, Denmark, June 2527 (2014) Iodice, P., Abagnale, C., Cardone, M., Strano, S., Terzo, M., Vorraro, G.: Performance evaluation and environmental analysis of an electrically assisted bicycle under real driving conditions. Proceedings of the ASME 12th Biennial Conference on Engineering Systems Design and Analysis (ESDA2014), vol. 1, Copenhagen, Denmark, June 2527 (2014)
12.
go back to reference Cammarata, A., Lacagnina, M., Sinatra, R.: Closed-form solutions for the inverse kinematics of the Agile Eye with constraint errors on the revolute joint axes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 317–322 (2016) Cammarata, A., Lacagnina, M., Sinatra, R.: Closed-form solutions for the inverse kinematics of the Agile Eye with constraint errors on the revolute joint axes. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 317–322 (2016)
13.
go back to reference Cammarata, A.: Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems. Mech. Mach. Theory 83, 175–186 (2015)CrossRef Cammarata, A.: Optimized design of a large-workspace 2-DOF parallel robot for solar tracking systems. Mech. Mach. Theory 83, 175–186 (2015)CrossRef
14.
go back to reference Sinatra, R., Cammarata, A., Angeles, J.: Kinetostatic and inertial conditioning of the McGill Schnflies-motion generator. Adv. Mech. Eng. Article no. 186203 (2010) Sinatra, R., Cammarata, A., Angeles, J.: Kinetostatic and inertial conditioning of the McGill Schnflies-motion generator. Adv. Mech. Eng. Article no. 186203 (2010)
15.
go back to reference Callegari, M., Gabrielli, A., Cammarata, A., Sinatra, R.: Kinematics and dynamics of a 3-CRU spherical parallel robot. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 8 PART B, pp. 933–941 (2008) Callegari, M., Gabrielli, A., Cammarata, A., Sinatra, R.: Kinematics and dynamics of a 3-CRU spherical parallel robot. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2007, 8 PART B, pp. 933–941 (2008)
16.
go back to reference Bestle, D., Seybold, J.: Sensitivity analysis of constrained multibody systems. Arch. Appl. Mech. 62(3), 181–190 (1992)MATH Bestle, D., Seybold, J.: Sensitivity analysis of constrained multibody systems. Arch. Appl. Mech. 62(3), 181–190 (1992)MATH
17.
go back to reference Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64(2), 86–98 (1994)MATH Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64(2), 86–98 (1994)MATH
18.
go back to reference De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: ICCAIRO 2017—International Conference on Control, Artificial Intelligence, Robotics and Optimization, Prague, Czech Republic, 20–22 May 2017 (2017) De Simone, M.C., Russo, S., Rivera, Z.B., Guida, D.: Multibody model of a UAV in presence of wind fields. In: ICCAIRO 2017—International Conference on Control, Artificial Intelligence, Robotics and Optimization, Prague, Czech Republic, 20–22 May 2017 (2017)
19.
go back to reference Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 565–571 (2017)CrossRef Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 565–571 (2017)CrossRef
20.
go back to reference Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using arduino. FME Trans. 45(4), 578–584 (2017)CrossRef Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using arduino. FME Trans. 45(4), 578–584 (2017)CrossRef
21.
go back to reference Roberson, R.E.: On the practical use of Euler–Rodrigues parameters in multibody system dynamic simulation. Arch. Appl. Mech. 55(2), 114–123 (1985) Roberson, R.E.: On the practical use of Euler–Rodrigues parameters in multibody system dynamic simulation. Arch. Appl. Mech. 55(2), 114–123 (1985)
22.
go back to reference Kadziela, B., Manka, M., Uhl, T., Toso, A.: Validation and optimization of the leaf spring multibody numerical model. Arch. Appl. Mech. 85(12), 1899–1914 (2015)CrossRef Kadziela, B., Manka, M., Uhl, T., Toso, A.: Validation and optimization of the leaf spring multibody numerical model. Arch. Appl. Mech. 85(12), 1899–1914 (2015)CrossRef
23.
go back to reference Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)CrossRef Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)CrossRef
24.
go back to reference Gao, Y., Villecco, F., Li, M., Song, W.: Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis. Entropy 19(4), 176 (2017)CrossRef Gao, Y., Villecco, F., Li, M., Song, W.: Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis. Entropy 19(4), 176 (2017)CrossRef
25.
go back to reference Formato, A., Ianniello, D., Villecco, F., Lenza, T.L.L., Guida, D.: Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 29(1), 36 (2017)CrossRef Formato, A., Ianniello, D., Villecco, F., Lenza, T.L.L., Guida, D.: Design optimization of the plough working surface by computerized mathematical model. Emir. J. Food Agric. 29(1), 36 (2017)CrossRef
26.
go back to reference Cammarata, A., Sequenzia, G., Oliveri, S.M., Fatuzzo, G.: Modified chain algorithm to study planar compliant mechanisms. Int. J. Interact. Des. Manuf. 10(2), 191–201 (2016)CrossRef Cammarata, A., Sequenzia, G., Oliveri, S.M., Fatuzzo, G.: Modified chain algorithm to study planar compliant mechanisms. Int. J. Interact. Des. Manuf. 10(2), 191–201 (2016)CrossRef
27.
go back to reference Cammarata, A.: Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 105, 272–284 (2016)CrossRef Cammarata, A.: Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 105, 272–284 (2016)CrossRef
28.
go back to reference Cammarata, A., Sinatra, R.: On the elastostatics of spherical parallel machines with curved links. Mech. Mach. Sci. 33, 347–356 (2015)CrossRef Cammarata, A., Sinatra, R.: On the elastostatics of spherical parallel machines with curved links. Mech. Mach. Sci. 33, 347–356 (2015)CrossRef
29.
go back to reference Cammarata, A., Angeles, J., Sinatra, R.: The dynamics of parallel Schonflies motion generators: the case of a two-limb system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(1), 29–52 (2009)CrossRef Cammarata, A., Angeles, J., Sinatra, R.: The dynamics of parallel Schonflies motion generators: the case of a two-limb system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(1), 29–52 (2009)CrossRef
30.
go back to reference Shabana, A.A.: Computational Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)MATH Shabana, A.A.: Computational Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)MATH
31.
go back to reference Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)MathSciNetCrossRef Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)MathSciNetCrossRef
32.
go back to reference Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)CrossRefMATH Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)CrossRefMATH
33.
go back to reference Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016) Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016)
34.
go back to reference Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015) Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015)
35.
go back to reference Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60–61, 715–726 (2015)CrossRef Strano, S., Terzo, M.: A SDRE-based tracking control for a hydraulic actuation system. Mech. Syst. Signal Process. 60–61, 715–726 (2015)CrossRef
36.
go back to reference Strano, S., Terzo, M.: A multi-purpose seismic test rig control via a sliding mode approach. Struct. Control Health Monit. 21(8), 1193–1207 (2014)CrossRef Strano, S., Terzo, M.: A multi-purpose seismic test rig control via a sliding mode approach. Struct. Control Health Monit. 21(8), 1193–1207 (2014)CrossRef
37.
go back to reference Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017)CrossRef Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017)CrossRef
38.
go back to reference Pappalardo, C.M., Guida, D.: Control of nonlinear vibrations using the adjoint method. Meccanica 52(11–12), 2503–2526 (2017) Pappalardo, C.M., Guida, D.: Control of nonlinear vibrations using the adjoint method. Meccanica 52(11–12), 2503–2526 (2017)
40.
go back to reference Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. J. Multibody Syst. Dyn. 9, 283–309 (2003)MathSciNetCrossRefMATH Mikkola, A.M., Shabana, A.A.: A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. J. Multibody Syst. Dyn. 9, 283–309 (2003)MathSciNetCrossRefMATH
41.
go back to reference Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 230(1), 1–16 (2016) Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 230(1), 1–16 (2016)
42.
go back to reference Cammarata, A., Calio, I., D’Urso, D., Greco, A., Lacagnina, M., Fichera, G.: Dynamic Stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)CrossRef Cammarata, A., Calio, I., D’Urso, D., Greco, A., Lacagnina, M., Fichera, G.: Dynamic Stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)CrossRef
43.
go back to reference Callegari, M., Cammarata, A., Gabrielli, A., Ruggiu, M., Sinatra, R.: Analysis and design of a spherical micromechanism with flexure hinges. J. Mech. Des. Trans. ASME 131(5), 0510031–05100311 (2009)CrossRef Callegari, M., Cammarata, A., Gabrielli, A., Ruggiu, M., Sinatra, R.: Analysis and design of a spherical micromechanism with flexure hinges. J. Mech. Des. Trans. ASME 131(5), 0510031–05100311 (2009)CrossRef
44.
go back to reference Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 1–7 (2012) Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 1–7 (2012)
45.
go back to reference Nachbagauer, K., Gerstmayr, : Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to buckling and nonlinear dynamic example. J. Comput. Nonlinear Dyn. 9(1), 1–8 (2013) Nachbagauer, K., Gerstmayr, : Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to buckling and nonlinear dynamic example. J. Comput. Nonlinear Dyn. 9(1), 1–8 (2013)
46.
go back to reference Cammarata, A., Condorelli, D., Sinatra, R.: An algorithm to study the elastodynamics of parallel kinematic machines with lower kinematic pairs. J. Mech. Robot. 5(1). Article no. 011004 (2012) Cammarata, A., Condorelli, D., Sinatra, R.: An algorithm to study the elastodynamics of parallel kinematic machines with lower kinematic pairs. J. Mech. Robot. 5(1). Article no. 011004 (2012)
47.
go back to reference Cammarata, A., Sinatra, R.: Elastodynamic optimization of a 3T1R parallel manipulator. Mech. Mach. Theory 73, 184–196 (2014)CrossRef Cammarata, A., Sinatra, R.: Elastodynamic optimization of a 3T1R parallel manipulator. Mech. Mach. Theory 73, 184–196 (2014)CrossRef
48.
go back to reference Shabana, A.A.: Definition of ANCF finite elements. ASME J. Comput. Nonlinear Dyn. 10(5), 1–5 (2015)MathSciNet Shabana, A.A.: Definition of ANCF finite elements. ASME J. Comput. Nonlinear Dyn. 10(5), 1–5 (2015)MathSciNet
49.
go back to reference Zheng, Y., Shabana, A.A.: Planar ANCF/CRBF shear deformable beam. ASME J. Comput. Nonlinear Dyn. 87, 1031–1043 (2017)CrossRef Zheng, Y., Shabana, A.A.: Planar ANCF/CRBF shear deformable beam. ASME J. Comput. Nonlinear Dyn. 87, 1031–1043 (2017)CrossRef
50.
go back to reference He, G., Patel, M.D., Shabana, A.A.: Integration of localized surface geometry in fully parameterized ANCF finite elements. J. Comput. Methods Appl. Mech. Eng. 313, 966–985 (2017)MathSciNetCrossRef He, G., Patel, M.D., Shabana, A.A.: Integration of localized surface geometry in fully parameterized ANCF finite elements. J. Comput. Methods Appl. Mech. Eng. 313, 966–985 (2017)MathSciNetCrossRef
51.
go back to reference Hu, W., Tian, Q., Hu, H.Y.: Dynamics simulation of the liquid-filled flexible multibody system via the absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNetCrossRef Hu, W., Tian, Q., Hu, H.Y.: Dynamics simulation of the liquid-filled flexible multibody system via the absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNetCrossRef
52.
go back to reference Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)CrossRefMATH Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)CrossRefMATH
53.
go back to reference Liu, C., Tian, Q., Yan, D., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations, and wrinkles via thin shell elements of ANCF. J. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)MathSciNetCrossRefMATH Liu, C., Tian, Q., Yan, D., Hu, H.Y.: Dynamic analysis of membrane systems undergoing overall motions, large deformations, and wrinkles via thin shell elements of ANCF. J. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)MathSciNetCrossRefMATH
54.
go back to reference Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 1–12 (2017) Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. ASME J. Vib. Acoust. 139(1), 1–12 (2017)
55.
go back to reference Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 1–13 (2017) Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. ASME J. Comput. Nonlinear Dyn. 12(3), 1–13 (2017)
56.
go back to reference Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11(5), 1–15 (2016) Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. ASME J. Comput. Nonlinear Dyn. 11(5), 1–15 (2016)
57.
go back to reference Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007)CrossRefMATH Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007)CrossRefMATH
58.
go back to reference Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. J. Nonlinear Dyn. 32, 71–92 (2003) Bauchau, O.A., Trainelli, L.: The vectorial parameterization of rotation. J. Nonlinear Dyn. 32, 71–92 (2003)
59.
go back to reference Nikravesh, P.E., Chung, I.S.: Application of Euler parameters to the dynamic analysis of three-dimensional constrained mechanical systems. J. Mech. Des. 104(4), 785–791 (1982)CrossRef Nikravesh, P.E., Chung, I.S.: Application of Euler parameters to the dynamic analysis of three-dimensional constrained mechanical systems. J. Mech. Des. 104(4), 785–791 (1982)CrossRef
60.
go back to reference Nikravesh, P.E.: An overview of several formulations for multibody dynamics. In: Talaba, D., Roche, T.(eds.) Product Engineering, pp. 189–226. Springer, Dordrecht (2004) Nikravesh, P.E.: An overview of several formulations for multibody dynamics. In: Talaba, D., Roche, T.(eds.) Product Engineering, pp. 189–226. Springer, Dordrecht (2004)
61.
go back to reference Pappalardo, C.M.: Modelling rigid multibody systems using natural absolute coordinates. J. Mech. Eng. Ind. Des. 3(1), 24–38 (2014)MathSciNet Pappalardo, C.M.: Modelling rigid multibody systems using natural absolute coordinates. J. Mech. Eng. Ind. Des. 3(1), 24–38 (2014)MathSciNet
62.
go back to reference Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetCrossRefMATH Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetCrossRefMATH
64.
go back to reference Garcia de Jalon, J.G., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)CrossRefMATH Garcia de Jalon, J.G., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)CrossRefMATH
65.
go back to reference Garcia de Jalon, J.G., Unda, J., Avello, A., Jimenez, J.M.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. J. Mech. Transm. Autom. Des. 109(4), 460–465 (1987)CrossRefMATH Garcia de Jalon, J.G., Unda, J., Avello, A., Jimenez, J.M.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. J. Mech. Transm. Autom. Des. 109(4), 460–465 (1987)CrossRefMATH
66.
go back to reference Uhlar, S., Betsch, P.: A rotationless formulation of multibody dynamics: modeling of screw joints and incorporation of control constraints. Multibody Syst. Dyn. 22(1), 69–95 (2009)MathSciNetCrossRefMATH Uhlar, S., Betsch, P.: A rotationless formulation of multibody dynamics: modeling of screw joints and incorporation of control constraints. Multibody Syst. Dyn. 22(1), 69–95 (2009)MathSciNetCrossRefMATH
67.
go back to reference Betsch, P., Sanger, N.: A nonlinear finite element framework for flexible multibody dynamics: rotationless formulation and energy-momentum conserving discretization. Multibody Dyn. Comput. Methods Appl. 12, 119–141 (2009)MathSciNetMATH Betsch, P., Sanger, N.: A nonlinear finite element framework for flexible multibody dynamics: rotationless formulation and energy-momentum conserving discretization. Multibody Dyn. Comput. Methods Appl. 12, 119–141 (2009)MathSciNetMATH
68.
go back to reference Udwadia, F.E.: Inverse problem of Lagrangian mechanics for classically damped linear multi-degrees-of-freedom systems. J. Appl. Mech. 83(10), 104501 (2016)CrossRef Udwadia, F.E.: Inverse problem of Lagrangian mechanics for classically damped linear multi-degrees-of-freedom systems. J. Appl. Mech. 83(10), 104501 (2016)CrossRef
70.
go back to reference Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. J. Numer. Algebra Control Optim. 3(3), 425–443 (2013)MathSciNetCrossRefMATH Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. J. Numer. Algebra Control Optim. 3(3), 425–443 (2013)MathSciNetCrossRefMATH
71.
72.
go back to reference Udwadia, F.E., Koganti, P.B.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82, 547–562 (2015)MathSciNetCrossRefMATH Udwadia, F.E., Koganti, P.B.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82, 547–562 (2015)MathSciNetCrossRefMATH
73.
go back to reference Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. J. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)MathSciNetMATH Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. J. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)MathSciNetMATH
74.
go back to reference Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81, 1–6 (2014) Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81, 1–6 (2014)
75.
go back to reference Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–2117 (2006)MathSciNetCrossRefMATH Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–2117 (2006)MathSciNetCrossRefMATH
76.
go back to reference Shabana, A.A.: Euler parameters kinetic singularity. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 228(3), 307–313 (2014) Shabana, A.A.: Euler parameters kinetic singularity. Proc. Inst. Mech. Eng. Part K J. Multi Body Dyn. 228(3), 307–313 (2014)
77.
go back to reference Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in lagrangian mechanics. Acta Mech. 213(1), 111–129 (2010)CrossRefMATH Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in lagrangian mechanics. Acta Mech. 213(1), 111–129 (2010)CrossRefMATH
78.
go back to reference Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. A 468(2138), 395–414 (2012)MathSciNetCrossRefMATH Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. A 468(2138), 395–414 (2012)MathSciNetCrossRefMATH
79.
80.
81.
go back to reference Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic, constrained dynamical systems via Gauss’s principle. J. Appl. Mech. 60(3), 662–668 (1993)MathSciNetCrossRefMATH Kalaba, R.E., Udwadia, F.E.: Equations of motion for nonholonomic, constrained dynamical systems via Gauss’s principle. J. Appl. Mech. 60(3), 662–668 (1993)MathSciNetCrossRefMATH
82.
go back to reference De Falco, D., Pennestri, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)CrossRef De Falco, D., Pennestri, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia–Kalaba formulation. J. Aerosp. Eng. 22(4), 365–372 (2009)CrossRef
83.
go back to reference Pennestri, E., Valentini, P.P., De Falco, D.: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems. J. Franklin Inst. 347(1), 173–194 (2010)MathSciNetCrossRefMATH Pennestri, E., Valentini, P.P., De Falco, D.: An application of the Udwadia–Kalaba dynamic formulation to flexible multibody systems. J. Franklin Inst. 347(1), 173–194 (2010)MathSciNetCrossRefMATH
84.
go back to reference Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010) Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010)
85.
go back to reference Sherif, K., Nachbagauer, K., Steiner, W.: On the rotational equations of motion in rigid body dynamics when using Euler parameters. J. Nonlinear Dyn. 81, 343–352 (2015)MathSciNetCrossRefMATH Sherif, K., Nachbagauer, K., Steiner, W.: On the rotational equations of motion in rigid body dynamics when using Euler parameters. J. Nonlinear Dyn. 81, 343–352 (2015)MathSciNetCrossRefMATH
86.
go back to reference Vadali, S.R.: On the Euler parameter constraint. J. Astronaut. Sci. 36, 259–265 (1988) Vadali, S.R.: On the Euler parameter constraint. J. Astronaut. Sci. 36, 259–265 (1988)
87.
go back to reference Mariti, L., Belfiore, N., Pennestri, E., Valentini, P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Meth. Eng. 88(7), 637–656 (2011)MathSciNetCrossRefMATH Mariti, L., Belfiore, N., Pennestri, E., Valentini, P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Meth. Eng. 88(7), 637–656 (2011)MathSciNetCrossRefMATH
88.
go back to reference Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)CrossRef Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)CrossRef
89.
go back to reference Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009)
90.
go back to reference Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009)
91.
go back to reference Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016) Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016)
92.
go back to reference De Simone, M.C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 4483–4491 (2015) De Simone, M.C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 4483–4491 (2015)
93.
go back to reference Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009)
94.
go back to reference Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009) Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009)
95.
go back to reference Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013) Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013)
96.
go back to reference Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017) Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)
97.
go back to reference Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017) Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)
98.
go back to reference Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007). ReprintMATH Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007). ReprintMATH
Metadata
Title
On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems
Authors
Carmine M. Pappalardo
Domenico Guida
Publication date
27-10-2017
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 3/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-017-1317-y

Other articles of this Issue 3/2018

Archive of Applied Mechanics 3/2018 Go to the issue

Premium Partners