Skip to main content
Top

2018 | OriginalPaper | Chapter

19. On the Landmark Survival Model for Dynamic Prediction of Event Occurrence Using Longitudinal Data

Authors : Yayuan Zhu, Liang Li, Xuelin Huang

Published in: New Frontiers of Biostatistics and Bioinformatics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In longitudinal cohort studies, participants are often monitored through periodic clinical visits until the occurrence of a terminal clinical event. A question of interest to both scientific research and clinical practice is to predict the risk of the terminal event at each visit, using the longitudinal prognostic information collected up to the visit. This problem is called the dynamic prediction: a real-time, personalized prediction of the risk of a future adverse clinical event with longitudinally measured biomarkers and other prognostic information. An important method for dynamic prediction is the landmark Cox model and variants. A fundamental difficulty in the current methodological research of this kind of models is that it is unclear whether there exists a joint distribution of the longitudinal and time-to-event data that satisfies the model assumptions. As a result, this model is often viewed as a working model instead of a probability distribution, and its statistical properties are often studied using data simulated from shared random effect models, where the landmark model works under misspecification. In this paper, we demonstrate that a joint distribution of longitudinal and survival data exists that satisfy the modeling assumptions without additional restrictions, and propose an algorithm to generate data from this joint distribution. We further generalize the results to the more flexible landmark linear transformation models that include the landmark Cox model as a special case. These results facilitate future theoretical and numerical research on landmark survival models for dynamic prediction.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Blanche, P., Proust-Lima, C., Loubère, L., Berr, C., Dartigues, J. F., & Jacqmin-Gadda, H. (2015). Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics, 71(1), 102–113.MathSciNetCrossRef Blanche, P., Proust-Lima, C., Loubère, L., Berr, C., Dartigues, J. F., & Jacqmin-Gadda, H. (2015). Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics, 71(1), 102–113.MathSciNetCrossRef
go back to reference Cheng, S. C., Wei, L. J., & Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82(4), 835–845.MathSciNetCrossRef Cheng, S. C., Wei, L. J., & Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82(4), 835–845.MathSciNetCrossRef
go back to reference Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.MATH Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.MATH
go back to reference Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., & Kantarjian, H. M. (1999). The biology of chronic myeloid leukemia. New England Journal of Medicine, 341(3), 164–172.CrossRef Faderl, S., Talpaz, M., Estrov, Z., O’Brien, S., Kurzrock, R., & Kantarjian, H. M. (1999). The biology of chronic myeloid leukemia. New England Journal of Medicine, 341(3), 164–172.CrossRef
go back to reference Gorre, M. E., & Sawyers, C. L. (2002). Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Current Opinion in Hematology, 9(4), 303–307.CrossRef Gorre, M. E., & Sawyers, C. L. (2002). Molecular mechanisms of resistance to STI571 in chronic myeloid leukemia. Current Opinion in Hematology, 9(4), 303–307.CrossRef
go back to reference Hochhaus, A., Kantarjian, H. M., Baccarani, M., Lipton, J. H., Apperley, J. F., Druker, B. J., et al. (2007). Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood, 109(6), 2303–2309.CrossRef Hochhaus, A., Kantarjian, H. M., Baccarani, M., Lipton, J. H., Apperley, J. F., Druker, B. J., et al. (2007). Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood, 109(6), 2303–2309.CrossRef
go back to reference Huang, X., Yan, F., Ning, J., Feng, Z., Choi, S. & Cortes, J. (2005). A two-stage approach for dynamic prediction of time-to-event distributions. Statistics in Medicine, 35(13), 2167–2182.MathSciNetCrossRef Huang, X., Yan, F., Ning, J., Feng, Z., Choi, S. & Cortes, J. (2005). A two-stage approach for dynamic prediction of time-to-event distributions. Statistics in Medicine, 35(13), 2167–2182.MathSciNetCrossRef
go back to reference Jewell, N. P., & Nielsen, J. P. (1993). A framework for consistent prediction rules based on markers. Biometrika, 80(1), 153–164.MathSciNetCrossRef Jewell, N. P., & Nielsen, J. P. (1993). A framework for consistent prediction rules based on markers. Biometrika, 80(1), 153–164.MathSciNetCrossRef
go back to reference Kalbfleisch, J. D., & Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd ed.). Hoboken, NJ: Wiley.CrossRef Kalbfleisch, J. D., & Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd ed.). Hoboken, NJ: Wiley.CrossRef
go back to reference Li, L., Greene, T., & Hu, B. (2018). A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data. Stat Methods Med Res. 27(8), 2264–2278.MathSciNetCrossRef Li, L., Greene, T., & Hu, B. (2018). A simple method to estimate the time-dependent receiver operating characteristic curve and the area under the curve with right censored data. Stat Methods Med Res. 27(8), 2264–2278.MathSciNetCrossRef
go back to reference Li, L., Luo, S., Hu, B., & Greene, T. (2017). Dynamic prediction of renal failure using longitudinal biomarkers in a cohort study of chronic kidney disease. Stat Biosci. 9(2), 357–378.CrossRef Li, L., Luo, S., Hu, B., & Greene, T. (2017). Dynamic prediction of renal failure using longitudinal biomarkers in a cohort study of chronic kidney disease. Stat Biosci. 9(2), 357–378.CrossRef
go back to reference Quintás-Cardama, A., Choi, S., Kantarjian, H., Jabbour, E., Huang, X., & Cortes, J. (2014). Predicting outcomes in patients with chronic myeloid leukemia at any time during tyrosine kinase inhibitor therapy. Clinical Lymphoma Myeloma and Leukemia, 14(4), 327–334.CrossRef Quintás-Cardama, A., Choi, S., Kantarjian, H., Jabbour, E., Huang, X., & Cortes, J. (2014). Predicting outcomes in patients with chronic myeloid leukemia at any time during tyrosine kinase inhibitor therapy. Clinical Lymphoma Myeloma and Leukemia, 14(4), 327–334.CrossRef
go back to reference Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics, 67(3), 819–829.MathSciNetCrossRef Rizopoulos, D. (2011). Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics, 67(3), 819–829.MathSciNetCrossRef
go back to reference Rizopoulos, D., Hatfield, L. A., Carlin, B. P., & Takkenberg, J. J. M. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. Journal of the American Statistical Association, 109(508), 1385–1397.MathSciNetCrossRef Rizopoulos, D., Hatfield, L. A., Carlin, B. P., & Takkenberg, J. J. M. (2014). Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. Journal of the American Statistical Association, 109(508), 1385–1397.MathSciNetCrossRef
go back to reference Sawyers, C. L. (1999). Chronic myeloid leukemia. New England Journal of Medicine, 340(17), 1330–1340.CrossRef Sawyers, C. L. (1999). Chronic myeloid leukemia. New England Journal of Medicine, 340(17), 1330–1340.CrossRef
go back to reference Steyerberg, E. W. (2009). Clinical prediction models: A practical approach to development, validation, and updating. New York: Springer.CrossRef Steyerberg, E. W. (2009). Clinical prediction models: A practical approach to development, validation, and updating. New York: Springer.CrossRef
go back to reference Taylor, J. M., Park, Y., Ankerst, D. P., Proust-Lima, C., Williams, S., Kestin, L., et al. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics, 69(1), 206–213.MathSciNetCrossRef Taylor, J. M., Park, Y., Ankerst, D. P., Proust-Lima, C., Williams, S., Kestin, L., et al. (2013). Real-time individual predictions of prostate cancer recurrence using joint models. Biometrics, 69(1), 206–213.MathSciNetCrossRef
go back to reference van Houwelingen, H. C. (2007). Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 34(1), 70–85.MathSciNetCrossRef van Houwelingen, H. C. (2007). Dynamic prediction by landmarking in event history analysis. Scandinavian Journal of Statistics, 34(1), 70–85.MathSciNetCrossRef
go back to reference van Houwelingen, H. C., & Putter H. (2008). Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Analysis, 14(4), 447–463.MathSciNetCrossRef van Houwelingen, H. C., & Putter H. (2008). Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data. Lifetime Data Analysis, 14(4), 447–463.MathSciNetCrossRef
go back to reference van Houwelingen, H., & Putter, H. (2011). Dynamic prediction in clinical survival analysis. Boca Raton, FL: Chapman & Hall/CRC.MATH van Houwelingen, H., & Putter, H. (2011). Dynamic prediction in clinical survival analysis. Boca Raton, FL: Chapman & Hall/CRC.MATH
go back to reference Wong, S. F. (2009). New dosing schedules of dasatinib for CML and adverse event management. Journal of Hematology & Oncology, 2(1), 10.CrossRef Wong, S. F. (2009). New dosing schedules of dasatinib for CML and adverse event management. Journal of Hematology & Oncology, 2(1), 10.CrossRef
go back to reference Yan, F., Lin, X., & Huang, X. (2017). Dynamic prediction of disease progression for leukemia patients by functional principal component analysis of longitudinal expression levels of an oncogene. The Annals of Applied Statistics, 11(3), 1649–1670.MathSciNetCrossRef Yan, F., Lin, X., & Huang, X. (2017). Dynamic prediction of disease progression for leukemia patients by functional principal component analysis of longitudinal expression levels of an oncogene. The Annals of Applied Statistics, 11(3), 1649–1670.MathSciNetCrossRef
go back to reference Zheng, Y. Y., & Heagerty, P. J. (2005). Partly conditional survival models for longitudinal data. Biometrics, 61(2), 379–391.MathSciNetCrossRef Zheng, Y. Y., & Heagerty, P. J. (2005). Partly conditional survival models for longitudinal data. Biometrics, 61(2), 379–391.MathSciNetCrossRef
Metadata
Title
On the Landmark Survival Model for Dynamic Prediction of Event Occurrence Using Longitudinal Data
Authors
Yayuan Zhu
Liang Li
Xuelin Huang
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-99389-8_19

Premium Partner