Skip to main content
Top

2024 | OriginalPaper | Chapter

On the Mod p Iwasawa Theory for Elliptic Curves

Authors : Chan-Ho Kim, R. Sujatha

Published in: Class Groups of Number Fields and Related Topics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this note, we study the mod p behavior of Kato’s Euler systems and fine Selmer groups for an elliptic curve with good reduction at a prime \(p \ge 5\). We show that we observe a version of the \(\lambda \)-invariant formula for fine Selmer groups for congruent elliptic curves holds, as in the work of Greenberg–Vatsal, and formulate a mod p version of Kato’s main conjecture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Coates, J., Sujatha, R.: Fine Selmer groups of elliptic curves over \(p\)-adic Lie extensions. Math. Ann. 331, 809–839 (2005)MathSciNetCrossRef Coates, J., Sujatha, R.: Fine Selmer groups of elliptic curves over \(p\)-adic Lie extensions. Math. Ann. 331, 809–839 (2005)MathSciNetCrossRef
2.
go back to reference Coates, J., Sujatha, R.: Cyclotomic fields and zeta values. In: Springer Monographs in Mathematics. Springer (2006) Coates, J., Sujatha, R.: Cyclotomic fields and zeta values. In: Springer Monographs in Mathematics. Springer (2006)
3.
go back to reference Delbourgo, D., Lei, A.: Congruences modulo \(p\) between \(\rho \) -twisted Hasse-Weil \(L\) -values. Trans. Am. Math. Soc. 370, 8047–8080 (2018)MathSciNetCrossRef Delbourgo, D., Lei, A.: Congruences modulo \(p\) between \(\rho \) -twisted Hasse-Weil \(L\) -values. Trans. Am. Math. Soc. 370, 8047–8080 (2018)MathSciNetCrossRef
4.
go back to reference Emerton, M., Pollack, R., Weston, T.: Variation of Iwasawa invariants in Hida families. Invent. Math. 163(3), 523–580 (2006)MathSciNetCrossRef Emerton, M., Pollack, R., Weston, T.: Variation of Iwasawa invariants in Hida families. Invent. Math. 163(3), 523–580 (2006)MathSciNetCrossRef
5.
go back to reference Fukaya, T., Kato, K.: On conjectures of Sharifi. Kyoto J. Math. 64(2), 277–420 (2024) Fukaya, T., Kato, K.: On conjectures of Sharifi. Kyoto J. Math. 64(2), 277–420 (2024)
6.
go back to reference Greenberg, R., Iovita, A., Pollack, R.: On the Iwasawa invariants for elliptic curves with supersingular reduction, in preparation (2008) Greenberg, R., Iovita, A., Pollack, R.: On the Iwasawa invariants for elliptic curves with supersingular reduction, in preparation (2008)
7.
go back to reference Greenberg, R.: Iwasawa theory for elliptic curves, arithmetic theory of elliptic curves (Cetraro, 1997) (Berlin) (C. Viola, ed.), Lecture Notes in Math., vol. 1716, Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, Springer-Verlag, 1999, Lectures from the 3rd C.I.M.E. Session held in Cetraro, July 12–19, 1997, pp. 51–144 Greenberg, R.: Iwasawa theory for elliptic curves, arithmetic theory of elliptic curves (Cetraro, 1997) (Berlin) (C. Viola, ed.), Lecture Notes in Math., vol. 1716, Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, Springer-Verlag, 1999, Lectures from the 3rd C.I.M.E. Session held in Cetraro, July 12–19, 1997, pp. 51–144
8.
go back to reference Greenberg, R.: On the structure of Selmer groups. In: Loeffler, D., Zerbes, S.L. (eds.) Elliptic Curves, Modular Forms and Iwasawa Theory. Springer Proceedings in Mathematics and Statistics, vol. 188. Springer (2016); In Honour of John H. Coates’ 70th Birthday, Cambridge, UK, March 2015, pp. 225–252 Greenberg, R.: On the structure of Selmer groups. In: Loeffler, D., Zerbes, S.L. (eds.) Elliptic Curves, Modular Forms and Iwasawa Theory. Springer Proceedings in Mathematics and Statistics, vol. 188. Springer (2016); In Honour of John H. Coates’ 70th Birthday, Cambridge, UK, March 2015, pp. 225–252
9.
10.
go back to reference Hatley, J.: Rank parity for congruent supersingular elliptic curves. Proc. Am. Math. Soc. 145(9), 3775–3786 (2017)MathSciNetCrossRef Hatley, J.: Rank parity for congruent supersingular elliptic curves. Proc. Am. Math. Soc. 145(9), 3775–3786 (2017)MathSciNetCrossRef
11.
go back to reference Kato, K.: Lectures on the approach to Iwasawa theory for Hasse–Weil L-functions via \({\bf {B}}_{\text{dR}}\). Part I, Arithmetic Algebraic Geometry (Heidelberg) (E. Ballico, ed.), Lecture Notes in Math., vol. 1553, Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, Springer-Verlag, 1993, Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Trento, Italy, June 24–July 2, 1991, pp. 50–163 Kato, K.: Lectures on the approach to Iwasawa theory for Hasse–Weil L-functions via \({\bf {B}}_{\text{dR}}\). Part I, Arithmetic Algebraic Geometry (Heidelberg) (E. Ballico, ed.), Lecture Notes in Math., vol. 1553, Centro Internazionale Matematico Estivo (C.I.M.E.), Florence, Springer-Verlag, 1993, Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Trento, Italy, June 24–July 2, 1991, pp. 50–163
12.
go back to reference Kato, K.: p-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295, 117–290 (2004)MathSciNet Kato, K.: p-adic Hodge theory and values of zeta functions of modular forms. Astérisque 295, 117–290 (2004)MathSciNet
13.
go back to reference Kim, B.D.: The parity conjecture for elliptic curves at supersingular reduction primes. Compos. Math. 143(1), 47–72 (2007)MathSciNetCrossRef Kim, B.D.: The parity conjecture for elliptic curves at supersingular reduction primes. Compos. Math. 143(1), 47–72 (2007)MathSciNetCrossRef
14.
15.
16.
go back to reference Kim, C.-H.: Anticyclotomic Iwasawa invariants and congruences of modular forms. Asian J. Math. 21(3), 499–530 (2017)MathSciNetCrossRef Kim, C.-H.: Anticyclotomic Iwasawa invariants and congruences of modular forms. Asian J. Math. 21(3), 499–530 (2017)MathSciNetCrossRef
18.
19.
go back to reference Kurihara, M., Pollack, R.: Two \(p\)-adic \(L\)-functions and rational points on elliptic curves with supersingular reduction, \(L\)-functions and Galois representations (Cambridge). Burns, D, Buzzard, K., Nekovář, J. (eds.), London Mathematical Society Lecture Note Series, vol. 320, Cambridge University Press, pp. 300–332 (2007) Kurihara, M., Pollack, R.: Two \(p\)-adic \(L\)-functions and rational points on elliptic curves with supersingular reduction, \(L\)-functions and Galois representations (Cambridge). Burns, D, Buzzard, K., Nekovář, J. (eds.), London Mathematical Society Lecture Note Series, vol. 320, Cambridge University Press, pp. 300–332 (2007)
20.
go back to reference Kurihara, M.: On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction I. Invent. Math. 149, 195–224 (2002)MathSciNetCrossRef Kurihara, M.: On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction I. Invent. Math. 149, 195–224 (2002)MathSciNetCrossRef
21.
go back to reference Lei, A., Sujatha, R.: On fine Selmer groups and the greatest common divisor of signed and chromatic \(p\)-adic \(L\)-functions. Proc. Am. Math. Soc. 149(8), 3235–3243 (2021)MathSciNetCrossRef Lei, A., Sujatha, R.: On fine Selmer groups and the greatest common divisor of signed and chromatic \(p\)-adic \(L\)-functions. Proc. Am. Math. Soc. 149(8), 3235–3243 (2021)MathSciNetCrossRef
22.
24.
go back to reference Nuccio Mortarino Majno di Capriglio, F.A.E., Sujatha, R.: Residual supersingular Iwasawa theory and signed Iwasawa invariants. Rend. Sem. Mat. Univ. Padova 149, 83–129 (2023) Nuccio Mortarino Majno di Capriglio, F.A.E., Sujatha, R.: Residual supersingular Iwasawa theory and signed Iwasawa invariants. Rend. Sem. Mat. Univ. Padova 149, 83–129 (2023)
25.
go back to reference Pollack, R.: On the \(p\)-adic \(L\)-function of a modular form at a supersingular prime. Duke Math. J. 118(3), 523–558 (2003)MathSciNetCrossRef Pollack, R.: On the \(p\)-adic \(L\)-function of a modular form at a supersingular prime. Duke Math. J. 118(3), 523–558 (2003)MathSciNetCrossRef
26.
go back to reference Pollack, R., Rubin, K.: The main conjecture for CM elliptic curves at supersingular primes. Ann. Math. 159(1, 2), 447–464 (2004) Pollack, R., Rubin, K.: The main conjecture for CM elliptic curves at supersingular primes. Ann. Math. 159(1, 2), 447–464 (2004)
27.
go back to reference Ribet, K.: Congruence relations between modular forms. In: Proceedings of the International Congress of Mathematicians (Warsaw, 1983) (Warsaw), vol. 1, pp. 503–514 (1984) Ribet, K.: Congruence relations between modular forms. In: Proceedings of the International Congress of Mathematicians (Warsaw, 1983) (Warsaw), vol. 1, pp. 503–514 (1984)
28.
go back to reference Shekhar, S., Sujatha, R.: Congruence formula for certain dihedral twists. Trans. Am. Math. Soc. 367(5), 3579–3598 (2015)MathSciNetCrossRef Shekhar, S., Sujatha, R.: Congruence formula for certain dihedral twists. Trans. Am. Math. Soc. 367(5), 3579–3598 (2015)MathSciNetCrossRef
29.
go back to reference Sujatha, R.: On the \(\mu \)-invariant in iwasawa theory. WIN–women in numbers, fields Inst. Commun. Am. Math. Soc. 60, 265–276 (2011) Sujatha, R.: On the \(\mu \)-invariant in iwasawa theory. WIN–women in numbers, fields Inst. Commun. Am. Math. Soc. 60, 265–276 (2011)
31.
go back to reference Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141(2), 443–551 (1995) Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141(2), 443–551 (1995)
32.
go back to reference Wingberg, K.: Duality theorems for Abelian varieties over \(\mathbb{Z}_p\)-extensions, algebraic number theory—in honor of Kenkichi Iwasawa. In: Coates, J., Greenberg, R., Mazur, B., Satake, I. (eds.), Advanced Studies in Pure Mathematics, pp. 471–492. Academic Press (1989) Wingberg, K.: Duality theorems for Abelian varieties over \(\mathbb{Z}_p\)-extensions, algebraic number theory—in honor of Kenkichi Iwasawa. In: Coates, J., Greenberg, R., Mazur, B., Satake, I. (eds.), Advanced Studies in Pure Mathematics, pp. 471–492. Academic Press (1989)
Metadata
Title
On the Mod p Iwasawa Theory for Elliptic Curves
Authors
Chan-Ho Kim
R. Sujatha
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-6911-7_2

Premium Partner