Skip to main content
Top
Published in: Foundations of Computational Mathematics 4/2014

01-08-2014

On the Numerical Stability of Fourier Extensions

Authors: Ben Adcock, Daan Huybrechs, Jesús Martín-Vaquero

Published in: Foundations of Computational Mathematics | Issue 4/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An effective means to approximate an analytic, nonperiodic function on a bounded interval is by using a Fourier series on a larger domain. When constructed appropriately, this so-called Fourier extension is known to converge geometrically fast in the truncation parameter. Unfortunately, computing a Fourier extension requires solving an ill-conditioned linear system, and hence one might expect such rapid convergence to be destroyed when carrying out computations in finite precision. The purpose of this paper is to show that this is not the case. Specifically, we show that Fourier extensions are actually numerically stable when implemented in finite arithmetic, and achieve a convergence rate that is at least superalgebraic. Thus, in this instance, ill-conditioning of the linear system does not prohibit a good approximation.
In the second part of this paper we consider the issue of computing Fourier extensions from equispaced data. A result of Platte et al. (SIAM Rev. 53(2):308–318, 2011) states that no method for this problem can be both numerically stable and exponentially convergent. We explain how Fourier extensions relate to this theoretical barrier, and demonstrate that they are particularly well suited for this problem: namely, they obtain at least superalgebraic convergence in a numerically stable manner.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The constant of growth was obtained in private communication with A. Kuijlaars. A closed expression (up to several integrals involving the potential function ϕ for the nodes z n ) can be found for c(γ;T). We omit the full argument as it is rather lengthy, but note that it is based on standard results in potential theory. A general reference is [29].
 
Literature
1.
go back to reference B. Adcock, D. Huybrechs, On the resolution power of Fourier extensions for oscillatory functions. Technical Report TW597, Dept. Computer Science, K.U. Leuven, 2011. B. Adcock, D. Huybrechs, On the resolution power of Fourier extensions for oscillatory functions. Technical Report TW597, Dept. Computer Science, K.U. Leuven, 2011.
2.
go back to reference N. Albin, O.P. Bruno, A spectral FC solver for the compressible Navier–Stokes equations in general domains. I: Explicit time-stepping, J. Comput. Phys. 230(16), 6248–6270 (2011). CrossRefMATHMathSciNet N. Albin, O.P. Bruno, A spectral FC solver for the compressible Navier–Stokes equations in general domains. I: Explicit time-stepping, J. Comput. Phys. 230(16), 6248–6270 (2011). CrossRefMATHMathSciNet
3.
go back to reference H. Bateman, Higher Transcendental Functions, vol. 2 (McGraw–Hill, New York, 1953). H. Bateman, Higher Transcendental Functions, vol. 2 (McGraw–Hill, New York, 1953).
4.
go back to reference J.P. Boyd, Chebyshev and Fourier Spectral Methods (Springer, Berlin, 1989). CrossRef J.P. Boyd, Chebyshev and Fourier Spectral Methods (Springer, Berlin, 1989). CrossRef
5.
go back to reference J.P. Boyd, A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds, J. Comput. Phys. 178, 118–160 (2002). CrossRefMATHMathSciNet J.P. Boyd, A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds, J. Comput. Phys. 178, 118–160 (2002). CrossRefMATHMathSciNet
6.
go back to reference J. Boyd, Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C ∞, Appl. Math. Comput. 161(2), 591–597 (2005). CrossRefMATHMathSciNet J. Boyd, Fourier embedded domain methods: extending a function defined on an irregular region to a rectangle so that the extension is spatially periodic and C , Appl. Math. Comput. 161(2), 591–597 (2005). CrossRefMATHMathSciNet
7.
go back to reference J.P. Boyd, Trouble with Gegenbauer reconstruction for defeating Gibbs phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations, J. Comput. Phys. 204(1), 253–264 (2005). CrossRefMATHMathSciNet J.P. Boyd, Trouble with Gegenbauer reconstruction for defeating Gibbs phenomenon: Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations, J. Comput. Phys. 204(1), 253–264 (2005). CrossRefMATHMathSciNet
8.
go back to reference J.P. Boyd, J.R. Ong, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions. I. Single-interval schemes, Commun. Comput. Phys. 5(2–4), 484–497 (2009). MathSciNet J.P. Boyd, J.R. Ong, Exponentially-convergent strategies for defeating the Runge phenomenon for the approximation of non-periodic functions. I. Single-interval schemes, Commun. Comput. Phys. 5(2–4), 484–497 (2009). MathSciNet
9.
go back to reference J. Boyd, F. Xu, Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock–Chebyshev subset interpolation, Appl. Math. Comput. 210(1), 158–168 (2009). CrossRefMATHMathSciNet J. Boyd, F. Xu, Divergence (Runge phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock–Chebyshev subset interpolation, Appl. Math. Comput. 210(1), 158–168 (2009). CrossRefMATHMathSciNet
10.
go back to reference O.P. Bruno, Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics, in Topics in Computational Wave Propagation: Direct and Inverse Problems, ed. by M. Ainsworth et al. Lecture Notes in Computational Science and Engineering, vol. 31 (Springer, Berlin, 2003), pp. 43–82. CrossRef O.P. Bruno, Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics, in Topics in Computational Wave Propagation: Direct and Inverse Problems, ed. by M. Ainsworth et al. Lecture Notes in Computational Science and Engineering, vol. 31 (Springer, Berlin, 2003), pp. 43–82. CrossRef
11.
go back to reference O. Bruno, M. Lyon, High-order unconditionally stable FC–AD solvers for general smooth domains. I. Basic elements, J. Comput. Phys. 229(6), 2009–2033 (2010). CrossRefMATHMathSciNet O. Bruno, M. Lyon, High-order unconditionally stable FC–AD solvers for general smooth domains. I. Basic elements, J. Comput. Phys. 229(6), 2009–2033 (2010). CrossRefMATHMathSciNet
12.
go back to reference O.P. Bruno, Y. Han, M.M. Pohlman, Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis, J. Comput. Phys. 227(2), 1094–1125 (2007). CrossRefMATHMathSciNet O.P. Bruno, Y. Han, M.M. Pohlman, Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis, J. Comput. Phys. 227(2), 1094–1125 (2007). CrossRefMATHMathSciNet
13.
go back to reference C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer, Berlin, 2006). C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer, Berlin, 2006).
14.
15.
17.
18.
go back to reference B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cambridge, 1996). MATH B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press, Cambridge, 1996). MATH
19.
go back to reference D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, 1st edn. (SIAM, Philadelphia, 1977). CrossRefMATH D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, 1st edn. (SIAM, Philadelphia, 1977). CrossRefMATH
21.
go back to reference D. Gottlieb, C.-W. Shu, A. Solomonoff, H. Vandeven, On the Gibbs phenomenon. I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math. 43(1–2), 91–98 (1992). MathSciNet D. Gottlieb, C.-W. Shu, A. Solomonoff, H. Vandeven, On the Gibbs phenomenon. I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function, J. Comput. Appl. Math. 43(1–2), 91–98 (1992). MathSciNet
23.
go back to reference D. Kosloff, H. Tal-Ezer, A modified Chebyshev pseudospectral method with an \(\mathcal {O}(N^{-1})\) time step restriction, J. Comput. Phys. 104, 457–469 (1993). CrossRefMATHMathSciNet D. Kosloff, H. Tal-Ezer, A modified Chebyshev pseudospectral method with an \(\mathcal {O}(N^{-1})\) time step restriction, J. Comput. Phys. 104, 457–469 (1993). CrossRefMATHMathSciNet
24.
26.
go back to reference M. Lyon, O. Bruno, High-order unconditionally stable FC–AD solvers for general smooth domains. II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations, J. Comput. Phys. 229(9), 3358–3381 (2010). CrossRefMATHMathSciNet M. Lyon, O. Bruno, High-order unconditionally stable FC–AD solvers for general smooth domains. II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations, J. Comput. Phys. 229(9), 3358–3381 (2010). CrossRefMATHMathSciNet
27.
go back to reference R. Pasquetti, M. Elghaoui, A spectral embedding method applied to the advection–diffusion equation, J. Comput. Phys. 125, 464–476 (1996). CrossRefMATHMathSciNet R. Pasquetti, M. Elghaoui, A spectral embedding method applied to the advection–diffusion equation, J. Comput. Phys. 125, 464–476 (1996). CrossRefMATHMathSciNet
28.
go back to reference R. Platte, L.N. Trefethen, A. Kuijlaars, Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Rev. 53(2), 308–318 (2011). CrossRefMATHMathSciNet R. Platte, L.N. Trefethen, A. Kuijlaars, Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Rev. 53(2), 308–318 (2011). CrossRefMATHMathSciNet
29.
go back to reference T. Ransford, Potential Theory in the Complex Plane (Cambridge Univ. Press, Cambridge, 1995). CrossRefMATH T. Ransford, Potential Theory in the Complex Plane (Cambridge Univ. Press, Cambridge, 1995). CrossRefMATH
30.
go back to reference T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory (Wiley, New York, 1990). MATH T.J. Rivlin, Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory (Wiley, New York, 1990). MATH
31.
go back to reference D. Slepian, Prolate spheroidal wave functions. Fourier analysis, and uncertainty. V: The discrete case, Bell Syst. Tech. J. 57, 1371–1430 (1978). CrossRefMATH D. Slepian, Prolate spheroidal wave functions. Fourier analysis, and uncertainty. V: The discrete case, Bell Syst. Tech. J. 57, 1371–1430 (1978). CrossRefMATH
Metadata
Title
On the Numerical Stability of Fourier Extensions
Authors
Ben Adcock
Daan Huybrechs
Jesús Martín-Vaquero
Publication date
01-08-2014
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 4/2014
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-013-9158-8

Other articles of this Issue 4/2014

Foundations of Computational Mathematics 4/2014 Go to the issue

Premium Partner