Skip to main content
Top
Published in: Journal of Materials Science 20/2021

09-04-2021 | Ceramics

On the production of novel zirconia-reinforced bioactive glass porous structures for bone repair

Authors: Paula F. Gouveia, Joana Mesquita-Guimarães, Maria E. Galarraga-Vinueza, Júlio C. M. Souza, Anderson C. Moreira, Filipe S. Silva, Márcio C. Fredel, Bruno Henriques

Published in: Journal of Materials Science | Issue 20/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this study was to develop a replica method for producing zirconia-reinforced bioactive glass (ZRBG) porous structures for bone repair. Four different types of porous structures were produced: zirconia (G1), 58S BG-coated zirconia (G2), zirconia-reinforced BG (G3) and 58S BG-coated zirconia-reinforced BG (G4). A complete characterization of the specimens was performed via SEM-EDS, Archimedes method, 3D X-ray micro-tomography, micro-indentation, compressive strength tests and SBF immersion tests. G3 and G4 specimens presented a BG matrix (~ 33% glassy phase) with dispersed zirconia particles. The porosity of the specimens ranged from 86% up to 93%. BG58S-zirconia groups G3 and G4) exhibited lower YM (38.76 ± 11.20 GPa and 43.49 ± 2.16 GPa) than that of G1 monolithic zirconia specimens (94.39 ± 12.62 GPa), which were more compatible to that of the bone. No significant difference in compressive strength between BG58S-zirconia (G3: 0.41 ± 0.20 MPa; G4: 0.45 ± 0.11 MPa) and zirconia (G1: 0.32 ± 0.11 MPa) was detected observed (p > 0.05). In vitro SBF tests showed a potential bioactivity for ZRBG porous structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Perez RA, Mestres G (2016) Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C 61:922–939CrossRef Perez RA, Mestres G (2016) Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C 61:922–939CrossRef
2.
go back to reference Shadjou NHM (2015) Bone tissue engineering using silica-based mesoporous nanobiomaterials: recent progress. Mater Sci Eng C 55:401–409CrossRef Shadjou NHM (2015) Bone tissue engineering using silica-based mesoporous nanobiomaterials: recent progress. Mater Sci Eng C 55:401–409CrossRef
3.
go back to reference do Vale Pereira R (2011) Arcabouço compósito biodegradável produzido via sinterização seletiva a laser com matriz de Policaprolactona e partículas dispersas de Biovidro 58S. Universidade Federal de Santa Catarina do Vale Pereira R (2011) Arcabouço compósito biodegradável produzido via sinterização seletiva a laser com matriz de Policaprolactona e partículas dispersas de Biovidro 58S. Universidade Federal de Santa Catarina
4.
go back to reference Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
5.
go back to reference Hing K (2005) Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol 2(3):184–199CrossRef Hing K (2005) Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol 2(3):184–199CrossRef
6.
go back to reference Loh Q, Choong C (2013) Three-dimensional scaffolds for tissue engi-neering applications: role of porosity and pore size. Tissue Eng B Rev 19(6):485–502CrossRef Loh Q, Choong C (2013) Three-dimensional scaffolds for tissue engi-neering applications: role of porosity and pore size. Tissue Eng B Rev 19(6):485–502CrossRef
7.
go back to reference Tiainen H, Lyngstadaas S, Ellingsen J, Haugen H (2010) Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci Mater Med 21(10):2783–2792CrossRef Tiainen H, Lyngstadaas S, Ellingsen J, Haugen H (2010) Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci Mater Med 21(10):2783–2792CrossRef
8.
go back to reference Hutmacher D (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRef Hutmacher D (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRef
10.
go back to reference Saiz E, Zimmermann EA, Lee JS et al (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29:103–115CrossRef Saiz E, Zimmermann EA, Lee JS et al (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29:103–115CrossRef
11.
go back to reference Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
12.
go back to reference Jones JR, Hench LL (2003) Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci 7:301–307CrossRef Jones JR, Hench LL (2003) Regeneration of trabecular bone using porous ceramics. Curr Opin Solid State Mater Sci 7:301–307CrossRef
13.
go back to reference Sebdani MM, Fathi MH (2011) Fabrication and characterization of hydroxyapatite-forsterite-bioactive glass composite nanopowder for biomedical applications. Int J Appl Ceram Technol 8:553–559CrossRef Sebdani MM, Fathi MH (2011) Fabrication and characterization of hydroxyapatite-forsterite-bioactive glass composite nanopowder for biomedical applications. Int J Appl Ceram Technol 8:553–559CrossRef
14.
go back to reference Bellucci D, Cannillo V, Sola A (2012) A new highly bioactive composite for bone tissue repair. Int J Appl Ceram Technol 9:455–467CrossRef Bellucci D, Cannillo V, Sola A (2012) A new highly bioactive composite for bone tissue repair. Int J Appl Ceram Technol 9:455–467CrossRef
15.
go back to reference Oréfice RL, Pereira MDM, Mansur HS (2006) Biomateriais: fundamentos e aplicações. Cultura Médica, Rio de Janeiro Oréfice RL, Pereira MDM, Mansur HS (2006) Biomateriais: fundamentos e aplicações. Cultura Médica, Rio de Janeiro
16.
go back to reference Hench LL (2015) Opening paper 2015-some comments on bioglass: four eras of discovery and development. Biomed Glas 1:1–11 Hench LL (2015) Opening paper 2015-some comments on bioglass: four eras of discovery and development. Biomed Glas 1:1–11
17.
go back to reference Jones JR (2015) Review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82CrossRef Jones JR (2015) Review of bioactive glass: from hench to hybrids. Acta Biomater 23:S53–S82CrossRef
18.
go back to reference Ma J, Chen CZ, Wang DG et al (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol-gel derived SiO2-CaO-P2O5 bioglass. Ceram Int 36:1911–1916CrossRef Ma J, Chen CZ, Wang DG et al (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol-gel derived SiO2-CaO-P2O5 bioglass. Ceram Int 36:1911–1916CrossRef
19.
go back to reference Hench LL, Splinter RJ, Allen WC, Greenlee TK (1972) Bonding mechanism at interface of ceramic prosthetic materials. Biomed Mater 5(6):117–141CrossRef Hench LL, Splinter RJ, Allen WC, Greenlee TK (1972) Bonding mechanism at interface of ceramic prosthetic materials. Biomed Mater 5(6):117–141CrossRef
20.
go back to reference Rahaman MN, Liu X, Bal BS et al (2012) Bioactive glass in bone tissue engineering. Ceram Trans 237:73–82CrossRef Rahaman MN, Liu X, Bal BS et al (2012) Bioactive glass in bone tissue engineering. Ceram Trans 237:73–82CrossRef
21.
go back to reference Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRef Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRef
22.
go back to reference Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740CrossRef Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740CrossRef
23.
go back to reference Zhong J, Greenspan DC (2000) Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res 53(6):696–701CrossRef Zhong J, Greenspan DC (2000) Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res 53(6):696–701CrossRef
24.
go back to reference Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311CrossRef Sepulveda P, Jones JR, Hench LL (2002) In vitro dissolution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res 61:301–311CrossRef
25.
go back to reference Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31(7):1245–1256CrossRef Fu Q, Saiz E, Rahaman MN, Tomsia AP (2011) Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C 31(7):1245–1256CrossRef
26.
go back to reference Boccardi E, Philippart A, Melli V et al (2016) Bioactivity and mechanical stability of 45S5 bioactive glass scaffolds based on natural marine sponges. Ann Biomed Eng 44:1881–1893CrossRef Boccardi E, Philippart A, Melli V et al (2016) Bioactivity and mechanical stability of 45S5 bioactive glass scaffolds based on natural marine sponges. Ann Biomed Eng 44:1881–1893CrossRef
27.
go back to reference Hum J, Boccaccini AR (2018) Collagen as coating material for 45S5 bioactive glass-based scaffolds for bone tissue engineering. Int J Mol Sci 19(6):1807CrossRef Hum J, Boccaccini AR (2018) Collagen as coating material for 45S5 bioactive glass-based scaffolds for bone tissue engineering. Int J Mol Sci 19(6):1807CrossRef
28.
go back to reference Lacefield WR, Hench LL (1985) The bonding of bioglass® to a cobalt-chromium surgical implant alloy. Biomaterials 7(2):104–108CrossRef Lacefield WR, Hench LL (1985) The bonding of bioglass® to a cobalt-chromium surgical implant alloy. Biomaterials 7(2):104–108CrossRef
29.
go back to reference Gomez-Vega JM, Saiz E, Tomsia AP et al (2000) Novel bioactive functionally graded coatings on Ti6Al4V. Adv Mater 12:894–898CrossRef Gomez-Vega JM, Saiz E, Tomsia AP et al (2000) Novel bioactive functionally graded coatings on Ti6Al4V. Adv Mater 12:894–898CrossRef
30.
go back to reference Schubert H (1986) Anisotropic thermal expansion coefficients of Y2O3-stabilized tetragonal zirconia. J Am Ceram Soc 69:270–271CrossRef Schubert H (1986) Anisotropic thermal expansion coefficients of Y2O3-stabilized tetragonal zirconia. J Am Ceram Soc 69:270–271CrossRef
31.
go back to reference Zhang Y, Legeros R, Kim J (2014). B2-Bioactive graded zirconia-based structures. US 8, 703,294 Zhang Y, Legeros R, Kim J (2014). B2-Bioactive graded zirconia-based structures. US 8, 703,294
32.
go back to reference Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543CrossRef Chevalier J (2006) What future for zirconia as a biomaterial? Biomaterials 27:535–543CrossRef
33.
go back to reference Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307CrossRef Denry I, Kelly JR (2008) State of the art of zirconia for dental applications. Dent Mater 24:299–307CrossRef
34.
go back to reference Özkurt Z, Kazazoğlu E (2011) Zirconia dental implants: a literature review. J Oral Implantol 37:367–376CrossRef Özkurt Z, Kazazoğlu E (2011) Zirconia dental implants: a literature review. J Oral Implantol 37:367–376CrossRef
35.
go back to reference Gouveia PF, Schabbach LM, Souza JCM et al (2017) New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. J Clean Prod 152:454–463CrossRef Gouveia PF, Schabbach LM, Souza JCM et al (2017) New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. J Clean Prod 152:454–463CrossRef
36.
go back to reference Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298CrossRef Kelly JR, Denry I (2008) Stabilized zirconia as a structural ceramic: an overview. Dent Mater 24:289–298CrossRef
37.
go back to reference Mesquita-Guimarães J, Leite MA, Souza JCM et al (2017) Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res-Part A 105:590–600CrossRef Mesquita-Guimarães J, Leite MA, Souza JCM et al (2017) Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res-Part A 105:590–600CrossRef
38.
go back to reference Galarraga-Vinueza ME, Passoni B, Benfatti CAM et al (2017) Inhibition of multi-species oral biofilm by bromide doped bioactive glass. J Biomed Mater Res-Part A 105:1994–2003CrossRef Galarraga-Vinueza ME, Passoni B, Benfatti CAM et al (2017) Inhibition of multi-species oral biofilm by bromide doped bioactive glass. J Biomed Mater Res-Part A 105:1994–2003CrossRef
39.
go back to reference Pereira RDV, Salmoria GV, de Moura MOC et al (2014) Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering. Mater Res 17:33–38CrossRef Pereira RDV, Salmoria GV, de Moura MOC et al (2014) Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering. Mater Res 17:33–38CrossRef
40.
go back to reference Bettelheim F, Brown W, Campbell M et al (2009) Introduction to general organic and biochemistry, 10th edn. Cengage Learning, Boston Bettelheim F, Brown W, Campbell M et al (2009) Introduction to general organic and biochemistry, 10th edn. Cengage Learning, Boston
41.
go back to reference Yin Y, Ma B, Hu C et al (2019) Preparation and properties of porous SiC–Al2O3 ceramics using coal ash. Int J Appl Ceram Technol 16:23–31CrossRef Yin Y, Ma B, Hu C et al (2019) Preparation and properties of porous SiC–Al2O3 ceramics using coal ash. Int J Appl Ceram Technol 16:23–31CrossRef
42.
go back to reference Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRef Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRef
43.
go back to reference Serra J (1986) Introduction to mathematical morphology. Comput Vision, Graph Image Process 35(3):283–305CrossRef Serra J (1986) Introduction to mathematical morphology. Comput Vision, Graph Image Process 35(3):283–305CrossRef
44.
go back to reference Gonzalez R, Woods R (2002) Digital image processing. Prentice Hall, Upper Saddle River Gonzalez R, Woods R (2002) Digital image processing. Prentice Hall, Upper Saddle River
45.
go back to reference Chassery JM, Montanvert A (1991) Géométrie discrete en analyse d’images, Editions H Chassery JM, Montanvert A (1991) Géométrie discrete en analyse d’images, Editions H
46.
go back to reference Diógenes AN, Dos Santos LOE, Fernandes CP et al (2009) Porous media microstrucutre reconstruction using pixel-based and object-based simulated annealing–comparison with other reconstruction methods. Rev Eng Térmica 8:35 Diógenes AN, Dos Santos LOE, Fernandes CP et al (2009) Porous media microstrucutre reconstruction using pixel-based and object-based simulated annealing–comparison with other reconstruction methods. Rev Eng Térmica 8:35
47.
go back to reference Stochero NP, de Moraes EG, Moreira AC et al (2020) Ceramic shell foams produced by direct foaming and gelcasting of proteins: permeability and microstructural characterization by X-ray microtomography. J Eur Ceram Soc 40(12):4224–4231CrossRef Stochero NP, de Moraes EG, Moreira AC et al (2020) Ceramic shell foams produced by direct foaming and gelcasting of proteins: permeability and microstructural characterization by X-ray microtomography. J Eur Ceram Soc 40(12):4224–4231CrossRef
48.
go back to reference Jain V, Johnson R, Ganesh I et al (2003) Effect of rubber encapsulation on the comparative mechanical behaviour of ceramic honeycomb and foam. Mater Sci Eng A 347:109–122CrossRef Jain V, Johnson R, Ganesh I et al (2003) Effect of rubber encapsulation on the comparative mechanical behaviour of ceramic honeycomb and foam. Mater Sci Eng A 347:109–122CrossRef
49.
go back to reference Mesquita-Guimarães J, Leite MA, Souza JCM et al (2017) Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res Part A 105:590–600CrossRef Mesquita-Guimarães J, Leite MA, Souza JCM et al (2017) Processing and strengthening of 58S bioactive glass-infiltrated titania scaffolds. J Biomed Mater Res Part A 105:590–600CrossRef
50.
go back to reference Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
51.
go back to reference Chatzistavrou X, Kantiranis N, Kontonasaki E et al (2011) Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites. Mater Charact 62:118–129CrossRef Chatzistavrou X, Kantiranis N, Kontonasaki E et al (2011) Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites. Mater Charact 62:118–129CrossRef
52.
go back to reference Boccaccini AR, Chen Q, Lefebvre L et al (2007) Sintering, crystallisation and biodegradation behaviour of bioglass s-derived glass–ceramics. Faraday Discuss 136:27–44CrossRef Boccaccini AR, Chen Q, Lefebvre L et al (2007) Sintering, crystallisation and biodegradation behaviour of bioglass s-derived glass–ceramics. Faraday Discuss 136:27–44CrossRef
53.
go back to reference Cannillo V, Pierli F, Sampath S, Siligardi C (2009) Thermal and physical characterisation of apatite/wollastonite bioactive glass-ceramics. J Eur Ceram Soc 29:611–619CrossRef Cannillo V, Pierli F, Sampath S, Siligardi C (2009) Thermal and physical characterisation of apatite/wollastonite bioactive glass-ceramics. J Eur Ceram Soc 29:611–619CrossRef
54.
go back to reference Blaeß C, Müller R, Poologasundarampillai G, Brauer DS (2019) Sintering and concomitant crystallization of bioactive glasses. Int J Appl Glas Sci 10:449–462CrossRef Blaeß C, Müller R, Poologasundarampillai G, Brauer DS (2019) Sintering and concomitant crystallization of bioactive glasses. Int J Appl Glas Sci 10:449–462CrossRef
55.
go back to reference Habibe AF, Maeda LD, Souza RC et al (2009) Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng C 29(6):1959–1964CrossRef Habibe AF, Maeda LD, Souza RC et al (2009) Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng C 29(6):1959–1964CrossRef
56.
go back to reference Zhu Y, Zhu R, Ma J et al (2015) In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed Mater 10:055009CrossRef Zhu Y, Zhu R, Ma J et al (2015) In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed Mater 10:055009CrossRef
57.
go back to reference Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425CrossRef Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425CrossRef
58.
go back to reference Chen QZ, Efthymiou A, Salih V, Boccaccini AR (2008) Bioglass®-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res-Part A 84(4):1049–1060CrossRef Chen QZ, Efthymiou A, Salih V, Boccaccini AR (2008) Bioglass®-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res-Part A 84(4):1049–1060CrossRef
59.
go back to reference Xia W, Chang J (2010) Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone. J Biomed Mater Res-Part B Appl Biomater 95(2):449–455CrossRef Xia W, Chang J (2010) Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone. J Biomed Mater Res-Part B Appl Biomater 95(2):449–455CrossRef
60.
go back to reference Srivastava AK, Pyare R, Sing SP (2012) Elastic properties of substituted 45S5 bioactive glasses and glass-ceramic. Int J Sci Eng Res 3(2):1–13 Srivastava AK, Pyare R, Sing SP (2012) Elastic properties of substituted 45S5 bioactive glasses and glass-ceramic. Int J Sci Eng Res 3(2):1–13
61.
go back to reference Chen QZ, Xu JL, Yu LG et al (2012) Spark plasma sintering of sol-gel derived 45S5 Bioglass®-ceramics: mechanical properties and biocompatibility evaluation. Mater Sci Eng C 32(3):494–502CrossRef Chen QZ, Xu JL, Yu LG et al (2012) Spark plasma sintering of sol-gel derived 45S5 Bioglass®-ceramics: mechanical properties and biocompatibility evaluation. Mater Sci Eng C 32(3):494–502CrossRef
62.
go back to reference Thompson ID, Hcnch LL (1998) Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng Part H J Eng Med 212(2):127–136CrossRef Thompson ID, Hcnch LL (1998) Mechanical properties of bioactive glasses, glass-ceramics and composites. Proc Inst Mech Eng Part H J Eng Med 212(2):127–136CrossRef
63.
go back to reference Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179CrossRef Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179CrossRef
64.
go back to reference Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10CrossRef Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10CrossRef
Metadata
Title
On the production of novel zirconia-reinforced bioactive glass porous structures for bone repair
Authors
Paula F. Gouveia
Joana Mesquita-Guimarães
Maria E. Galarraga-Vinueza
Júlio C. M. Souza
Anderson C. Moreira
Filipe S. Silva
Márcio C. Fredel
Bruno Henriques
Publication date
09-04-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 20/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06005-x

Other articles of this Issue 20/2021

Journal of Materials Science 20/2021 Go to the issue

Premium Partners