Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

On the Push&Pull Protocol for Rumour Spreading

Authors : Hüseyin Acan, Andrea Collevecchio, Abbas Mehrabian, Nick Wormald

Published in: Extended Abstracts Summer 2015

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The asynchronous push&pull protocol, a randomized distributed algorithm for spreading a rumour in a graph G, is defined as follows. Independent exponential clocks of rate 1 are associated with the vertices of G, one to each vertex. Initially, one vertex of G knows the rumour. Whenever the clock of a vertex x rings, it calls a random neighbour y: if x knows the rumour and y does not, then x tells y the rumour (a push operation), and if x does not know the rumour and y knows it, y tells x the rumour (a pull operation). The average spread time of G is the expected time it takes for all vertices to know the rumour, and the guaranteed spread time of G is the smallest time t such that with probability at least 1 − 1∕n, after time t all vertices know the rumour. The synchronous variant of this protocol, in which each clock rings precisely at times 1, 2, , has been studied extensively.
We prove the following results for any n-vertex graph: in either version, the average spread time is at most linear even if only the pull operation is used, and the guaranteed spread time is within a logarithmic factor of the average spread time, so it is O(nlogn). In the asynchronous version, both the average and guaranteed spread times are \(\Omega (\log n)\). We give examples of graphs illustrating that these bounds are best possible up to constant factors.
We also prove the first theoretical relationships between the guaranteed spread times in the two versions. Firstly, in all graphs the guaranteed spread time in the asynchronous version is within an O(logn) factor of that in the synchronous version, and this is tight. Next, we find examples of graphs whose asynchronous spread times are logarithmic, but the synchronous versions are polynomially large. Finally, we show for any graph that the ratio of the synchronous spread time to the asynchronous spread time is \(O\big(n^{2/3}\big)\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H. Amini, M. Draief, and M. Lelarge, “Flooding in weighted sparse random graphs”, SIAM J. Discrete Math. 27 (1) (2013), 1–26. H. Amini, M. Draief, and M. Lelarge, “Flooding in weighted sparse random graphs”, SIAM J. Discrete Math. 27 (1) (2013), 1–26.
2.
go back to reference N. Berger, C. Borgs, J.T. Chayes, and A.Saberi, “On the spread of viruses on the Internet”, Proc. 16-th Symp. Discrete Algorithms (SODA) (2005), 301–310. N. Berger, C. Borgs, J.T. Chayes, and A.Saberi, “On the spread of viruses on the Internet”, Proc. 16-th Symp. Discrete Algorithms (SODA) (2005), 301–310.
3.
go back to reference B. Bollobás and Y. Kohayakawa, “On Richardson’s model on the hypercube”, Combinatorics, geometry and probability (1993), 129–137. Cambridge Univ. Press, Cambridge, 1997. B. Bollobás and Y. Kohayakawa, “On Richardson’s model on the hypercube”, Combinatorics, geometry and probability (1993), 129–137. Cambridge Univ. Press, Cambridge, 1997.
4.
go back to reference S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms”, IEEE Transactions on Information Theory 52 (6) (2006), 2508–2530. S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms”, IEEE Transactions on Information Theory 52 (6) (2006), 2508–2530.
5.
go back to reference A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for replicated database maintenance”, Proc. 6-th Symp. Principles of Distributed Computing (PODC) (1987), 1–12. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for replicated database maintenance”, Proc. 6-th Symp. Principles of Distributed Computing (PODC) (1987), 1–12.
6.
go back to reference B. Doerr, M. Fouz, and T. Friedrich, “Social networks spread rumors in sublogarithmic time”, Proc. 43-th Symp. Theory of Computing (STOC) (2011), 21–30. B. Doerr, M. Fouz, and T. Friedrich, “Social networks spread rumors in sublogarithmic time”, Proc. 43-th Symp. Theory of Computing (STOC) (2011), 21–30.
7.
go back to reference B. Doerr, M. Fouz, and T. Friedrich, “Asynchronous rumor spreading in preferential attachment graphs”, Proc. 13-th Scandinavian Workshop Algorithm Theory (SWAT) (2012), 307–315. B. Doerr, M. Fouz, and T. Friedrich, “Asynchronous rumor spreading in preferential attachment graphs”, Proc. 13-th Scandinavian Workshop Algorithm Theory (SWAT) (2012), 307–315.
8.
go back to reference B. Doerr, M. Fouz, and T. Friedrich, “Experimental analysis of rumor spreading in social networks”, Design and analysis of algorithms, volume 7659 of Lecture Notes in Comput. Sci., 159–173. Springer, Heidelberg, 2012. B. Doerr, M. Fouz, and T. Friedrich, “Experimental analysis of rumor spreading in social networks”, Design and analysis of algorithms, volume 7659 of Lecture Notes in Comput. Sci., 159–173. Springer, Heidelberg, 2012.
9.
go back to reference R. Durrett, “Stochastic growth models: recent results and open problems”, Mathematical approaches to problems in resource management and epidemiology (Ithaca, NY, 1987), volume 81 of Lecture Notes in Biomath. 308–312. Springer, Berlin, 1989. R. Durrett, “Stochastic growth models: recent results and open problems”, Mathematical approaches to problems in resource management and epidemiology (Ithaca, NY, 1987), volume 81 of Lecture Notes in Biomath. 308–312. Springer, Berlin, 1989.
10.
go back to reference U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Randomized broadcast in networks”, Random Struct. Algorithms 1 (4) (1990), 447–460. U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Randomized broadcast in networks”, Random Struct. Algorithms 1 (4) (1990), 447–460.
11.
go back to reference J.A. Fill and R. Pemantle, “Percolation, first-passage percolation and covering times for Richardson’s model on the n-cube”, Ann. Appl. Probab. 3 (2) (1993), 593–629. J.A. Fill and R. Pemantle, “Percolation, first-passage percolation and covering times for Richardson’s model on the n-cube”, Ann. Appl. Probab. 3 (2) (1993), 593–629.
12.
go back to reference N. Fountoulakis and K. Panagiotou, “Rumor spreading on random regular graphs and expanders”, Proc. 14-th Intl. Workshop on Randomization and Comput. (RANDOM) (2010), 560–573. N. Fountoulakis and K. Panagiotou, “Rumor spreading on random regular graphs and expanders”, Proc. 14-th Intl. Workshop on Randomization and Comput. (RANDOM) (2010), 560–573.
13.
go back to reference N. Fountoulakis, K. Panagiotou, and T. Sauerwald, “Ultra-fast rumor spreading in social networks”, Proc. 23-th Symp. Discrete Algorithms (SODA) (2012), 1642–1660. N. Fountoulakis, K. Panagiotou, and T. Sauerwald, “Ultra-fast rumor spreading in social networks”, Proc. 23-th Symp. Discrete Algorithms (SODA) (2012), 1642–1660.
14.
go back to reference T. Friedrich, T. Sauerwald, and A. Stauffer, “Diameter and broadcast time of random geometric graphs in arbitrary dimensions”, Algorithmica 67 (1) (2013), 65–88. T. Friedrich, T. Sauerwald, and A. Stauffer, “Diameter and broadcast time of random geometric graphs in arbitrary dimensions”, Algorithmica 67 (1) (2013), 65–88.
15.
go back to reference G. Giakkoupis, “Tight bounds for rumor spreading in graphs of a given conductance”, 28-th International Symposium on Theoretical Aspects of Computer Science (STACS 2011) 9 (2011), 57–68. G. Giakkoupis, “Tight bounds for rumor spreading in graphs of a given conductance”, 28-th International Symposium on Theoretical Aspects of Computer Science (STACS 2011) 9 (2011), 57–68.
16.
go back to reference G. Giakkoupis, “Tight bounds for rumor spreading with vertex expansion”, Proc. 25-th Symp. Discrete Algorithms (SODA) (2014), 801–815. G. Giakkoupis, “Tight bounds for rumor spreading with vertex expansion”, Proc. 25-th Symp. Discrete Algorithms (SODA) (2014), 801–815.
17.
go back to reference M. Harchol-Balter, F. Thomson-Leighton, and D. Lewin, “Resource discovery in distributed networks”, Proc. 18-th Symp. Principles of Distributed Computing (PODC) (1999), 229–237. M. Harchol-Balter, F. Thomson-Leighton, and D. Lewin, “Resource discovery in distributed networks”, Proc. 18-th Symp. Principles of Distributed Computing (PODC) (1999), 229–237.
18.
go back to reference S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A survey of gossiping and broadcasting in communication networks”, Networks 18 (4) (1988), 319–349. S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, “A survey of gossiping and broadcasting in communication networks”, Networks 18 (4) (1988), 319–349.
19.
go back to reference C.D. Howard, “Models of first-passage percolation”, Probability on discrete structures 110 of Encyclopaedia Math. Sci. 125–173. Springer, Berlin, 2004. C.D. Howard, “Models of first-passage percolation”, Probability on discrete structures 110 of Encyclopaedia Math. Sci. 125–173. Springer, Berlin, 2004.
20.
go back to reference S. Janson, “One, two and three times logn∕n for paths in a complete graph with random weights”, Combin. Probab. Comput. 8 (4) (1999), 347–361. S. Janson, “One, two and three times lognn for paths in a complete graph with random weights”, Combin. Probab. Comput. 8 (4) (1999), 347–361.
21.
go back to reference R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, “Randomized Rumor Spreading”, Proc. 41-st Symp. Foundations of Computer Science (FOCS) (2000), 565–574. R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking, “Randomized Rumor Spreading”, Proc. 41-st Symp. Foundations of Computer Science (FOCS) (2000), 565–574.
22.
go back to reference D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information”, Proc. 44-th Symp. Foundations of Computer Science (FOCS) (2003), 482–491. D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information”, Proc. 44-th Symp. Foundations of Computer Science (FOCS) (2003), 482–491.
23.
go back to reference K. Panagiotou and L. Speidel, “Asynchronous rumor spreading on random graphs”, in L. Cai, S.W. Cheng, and T.W. Lam, editors, Algorithms and Computation 8283, of Lecture Notes in Computer Science, 424–434. Springer Berlin Heidelberg, 2013. K. Panagiotou and L. Speidel, “Asynchronous rumor spreading on random graphs”, in L. Cai, S.W. Cheng, and T.W. Lam, editors, Algorithms and Computation 8283, of Lecture Notes in Computer Science, 424–434. Springer Berlin Heidelberg, 2013.
Metadata
Title
On the Push&Pull Protocol for Rumour Spreading
Authors
Hüseyin Acan
Andrea Collevecchio
Abbas Mehrabian
Nick Wormald
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-51753-7_1

Premium Partner