Skip to main content
Top
Published in: International Journal of Material Forming 5/2019

30-10-2018 | Original Research

On the synergy between physical and virtual sheet metal testing: calibration of anisotropic yield functions using a microstructure-based plasticity model

Authors: S. Coppieters, T. Hakoyama, P. Eyckens, H. Nakano, A. Van Bael, D. Debruyne, T. Kuwabara

Published in: International Journal of Material Forming | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper scrutinizes in detail the synergy between physical and virtual testing of the mechanical response of sheet metal. In this context, physical testing refers to the usage of physical samples onto which mechanical tests are conducted, while virtual testing refers to multi-scale plasticity simulations onto a model representation of the metallic microstructure derived from microstructural measurement. An extensive experimental campaign was conducted to capture the plastic material response of mild steel sheet in the first quadrant of the biaxial stress space, i.e. for tensile stresses along the Rolling Direction (RD) and Transverse Direction (TD). The experimental data was acquired using state-of-the-art stress-controlled material tests enabling to probe the material up to large plastic strains in the first quadrant of stress space. Identical stress paths were simulated using the Virtual Experimentation Framework (VEF) software suite adopting the ALAMEL multi-scale plasticity model. The ALAMEL model was calibrated solely on the basis of the initial crystallographic texture of the material and a reference hardening curve obtained through a uniaxial tensile test in the rolling direction. The predictive accuracy of the ALAMEL model to reproduce the experimentally acquired material response has been thoroughly assessed. To avoid any bias in the assessment due to extrapolation of the material behavior, predictions were limited to the pre-necking regime of the material. The predictions of the VEF show good agreement with the physical test results. Subsequently, the experimental and virtual test data were used to calibrate Hill’s quadratic yield criterion and the Yld2000-2d yield function. The calibration accuracy of these yield criteria is thoroughly assessed by comparing theoretical predictions and experimental data. In addition, the calibrated yield functions are used to simulate a hydraulic bulge test and the results are compared with experimental observations. It is shown that the adopted virtual material testing procedure has reached a sufficient level of maturity to potentially serve as a viable alternative for physical material testing of steel sheet.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference ISO 16842 (2014) metallic materials - sheet and strip - biaxial tensile testing using a cruciform test piece ISO 16842 (2014) metallic materials - sheet and strip - biaxial tensile testing using a cruciform test piece
3.
go back to reference An Y, Vegter H, Carless L, Lambriks M (2011) A novel yield locus description by combining the taylor and the relaxed talor theory for sheet steels. Int J Plast 27(11):1758–1780CrossRefMATH An Y, Vegter H, Carless L, Lambriks M (2011) A novel yield locus description by combining the taylor and the relaxed talor theory for sheet steels. Int J Plast 27(11):1758–1780CrossRefMATH
4.
go back to reference Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039CrossRefMATH Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transformation-based anisotropic yield functions. Int J Plast 21:1009–1039CrossRefMATH
5.
go back to reference Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheetsdpart 1: theory. Int J Plast 19:1297–1319CrossRefMATH Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi SH, Chu E (2003) Plane stress yield function for aluminum alloy sheetsdpart 1: theory. Int J Plast 19:1297–1319CrossRefMATH
6.
go back to reference Bertin M, Hild F, Roux S (2016) Optimization of a biaxial tensile specimen geometry for the identification of constitutive parameters based upon full field measurements. Strain 52(4): 307–323CrossRef Bertin M, Hild F, Roux S (2016) Optimization of a biaxial tensile specimen geometry for the identification of constitutive parameters based upon full field measurements. Strain 52(4): 307–323CrossRef
7.
go back to reference Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to portevin-le chatelier bands. Exp Mech 46(6):789–803CrossRef Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to portevin-le chatelier bands. Exp Mech 46(6):789–803CrossRef
8.
go back to reference Coppieters S, Kuwabara T (2014) Identification of post-necking hardening phenomena in ductile sheet metal. Exp Mech 54:1355–1371CrossRef Coppieters S, Kuwabara T (2014) Identification of post-necking hardening phenomena in ductile sheet metal. Exp Mech 54:1355–1371CrossRef
9.
go back to reference Denys K, Coppieters S, Seefeldt M, Debruyne D (2016) Multi-dic setup for the identification of a 3d anisotropic yield surface of thick high strength steel using a double perforated specimen. Mech Mater 100:96–108CrossRef Denys K, Coppieters S, Seefeldt M, Debruyne D (2016) Multi-dic setup for the identification of a 3d anisotropic yield surface of thick high strength steel using a double perforated specimen. Mech Mater 100:96–108CrossRef
10.
go back to reference Eyckens P, Mulder H, Gawad J, Vegter H, Roose D, van den Boogaard T, Van Bael A, Van Houtte P (2015) The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling. Int J Plast 73:119–141 Eyckens P, Mulder H, Gawad J, Vegter H, Roose D, van den Boogaard T, Van Bael A, Van Houtte P (2015) The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling. Int J Plast 73:119–141
11.
go back to reference Gawad J, Banabic D, Van Bael A, Comsa D, Gologanu M, Eyckens P, Van Houtte P, Roose D (2015) An evolving plane stress yield criterion based on crystal plasticity virtual experiments. Int J Plast 75:141–169CrossRef Gawad J, Banabic D, Van Bael A, Comsa D, Gologanu M, Eyckens P, Van Houtte P, Roose D (2015) An evolving plane stress yield criterion based on crystal plasticity virtual experiments. Int J Plast 75:141–169CrossRef
12.
go back to reference Grytten F, Holmedal B, Hopperstad OS, Borvik T (2008) Evaluation of identification methods for yld2004-18p. Int J Plast 12:2248–2277CrossRefMATH Grytten F, Holmedal B, Hopperstad OS, Borvik T (2008) Evaluation of identification methods for yld2004-18p. Int J Plast 12:2248–2277CrossRefMATH
13.
go back to reference Güner A, Soyarslan C, Brosius A, Tekkaya AE (2012) Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for yld2000-2d yield function. Int J Solids Struct 49:3517–3527 Güner A, Soyarslan C, Brosius A, Tekkaya AE (2012) Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for yld2000-2d yield function. Int J Solids Struct 49:3517–3527
14.
go back to reference Hammami W, Gilles G, Habraken AM (2011) Duchêne: phenomenological and crystal plasticity approaches to describe the mechanical behavior of ti6al4v titanium alloy. Int J Mater Form 4(205):2015 Hammami W, Gilles G, Habraken AM (2011) Duchêne: phenomenological and crystal plasticity approaches to describe the mechanical behavior of ti6al4v titanium alloy. Int J Mater Form 4(205):2015
15.
go back to reference Hanabusa Y, Takizawa H, Kuwabara T (2010) Evaluation of accuracy of stress measurements determined in biaxial stress tests with cruciform specimen using numerical method. Steel Res Int 81(9):1376–1379 Hanabusa Y, Takizawa H, Kuwabara T (2010) Evaluation of accuracy of stress measurements determined in biaxial stress tests with cruciform specimen using numerical method. Steel Res Int 81(9):1376–1379
16.
go back to reference Hanabusa Y, Takizawa H, Kuwabara T (2013) Numerical verification of a biaxial tensile test method using a cruciform specimen. J Mater Process Technol 213:961–970CrossRef Hanabusa Y, Takizawa H, Kuwabara T (2013) Numerical verification of a biaxial tensile test method using a cruciform specimen. J Mater Process Technol 213:961–970CrossRef
17.
go back to reference Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A193 (1033):281–297MathSciNetMATH Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A193 (1033):281–297MathSciNetMATH
18.
go back to reference Hill R, Hecker S, Stout M (1994) An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load. Int J Solids Struct 31:2999– 3021CrossRefMATH Hill R, Hecker S, Stout M (1994) An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load. Int J Solids Struct 31:2999– 3021CrossRefMATH
19.
go back to reference Hill R, Hutchinson JW (1992) Differential hardening in sheet metal under biaxial loading: a theoretical framework. J Appl Mech 59:S1—S9CrossRefMATH Hill R, Hutchinson JW (1992) Differential hardening in sheet metal under biaxial loading: a theoretical framework. J Appl Mech 59:S1—S9CrossRefMATH
20.
go back to reference Ichikawa K, Kuwabara T, Coppieters S (2014) Forming simulation considering the differential work hardening behavior of a cold rolled interstitial-free steel sheet. Key Eng Mater 611-612:56– 61CrossRef Ichikawa K, Kuwabara T, Coppieters S (2014) Forming simulation considering the differential work hardening behavior of a cold rolled interstitial-free steel sheet. Key Eng Mater 611-612:56– 61CrossRef
21.
go back to reference Inal K, Mishra RK, Cazacu O (2010) Forming simulation of aluminum sheets using an anisotropic yield function coupled with crystal plasticity theory. Int J Solids Struct 47:2223– 2233CrossRefMATH Inal K, Mishra RK, Cazacu O (2010) Forming simulation of aluminum sheets using an anisotropic yield function coupled with crystal plasticity theory. Int J Solids Struct 47:2223– 2233CrossRefMATH
22.
go back to reference Jocham D, Norz R, Volk W (2017) Strain rate sensitivity of dc06 for high strains under biaxial stress in hydraulic bulge test and under uniaxial stress in tensile test. Int J Mater Form 10:453– 461CrossRef Jocham D, Norz R, Volk W (2017) Strain rate sensitivity of dc06 for high strains under biaxial stress in hydraulic bulge test and under uniaxial stress in tensile test. Int J Mater Form 10:453– 461CrossRef
23.
go back to reference Kim JH, Barlat F, Pierron F, Lee MG (2014) Determination of anisotropic plastic constitutive parameters using the virtual fields method. Exp Mech 54:1189–1204CrossRef Kim JH, Barlat F, Pierron F, Lee MG (2014) Determination of anisotropic plastic constitutive parameters using the virtual fields method. Exp Mech 54:1189–1204CrossRef
24.
go back to reference Kraska M, Doig M, Tikhomirov D, Raabe D, Roters F (2009) Virtual material testing for stamping simulations based on polycrystal plasticity. Comput Mater Sci 46:383–392CrossRef Kraska M, Doig M, Tikhomirov D, Raabe D, Roters F (2009) Virtual material testing for stamping simulations based on polycrystal plasticity. Comput Mater Sci 46:383–392CrossRef
25.
go back to reference Kuwabara T, Ikeda S, Kuroda T (1998) Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J Mater Process Technol 80/81:517– 523CrossRef Kuwabara T, Ikeda S, Kuroda T (1998) Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. J Mater Process Technol 80/81:517– 523CrossRef
26.
go back to reference Kuwabara T, Mori T, Asano M, Hakoyama T, Barlat F (2017) Material modeling of 6016-o and 6016-t4 aluminum alloy sheets and application to hole expansion forming simulation. Int J Plast 93:164–186CrossRef Kuwabara T, Mori T, Asano M, Hakoyama T, Barlat F (2017) Material modeling of 6016-o and 6016-t4 aluminum alloy sheets and application to hole expansion forming simulation. Int J Plast 93:164–186CrossRef
27.
go back to reference Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45:103–118CrossRef Kuwabara T, Sugawara F (2013) Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range. Int J Plast 45:103–118CrossRef
28.
go back to reference Kuwabara T, Yoshida K, Narihara K, Takahashi S (2005) Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure. Int J Plast 21:101– 117CrossRefMATH Kuwabara T, Yoshida K, Narihara K, Takahashi S (2005) Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure. Int J Plast 21:101– 117CrossRefMATH
29.
go back to reference Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in dic using deformation fields generated by plastic fea. Opt Lasers Eng 47(7-8):747–753CrossRef Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in dic using deformation fields generated by plastic fea. Opt Lasers Eng 47(7-8):747–753CrossRef
30.
go back to reference Lecompte D, Cooreman S, Coppieters S, Vantomme J, Sol H, Debruyne D (2009) Parameter identification for anisotropic plasticity model using digital image correlation. Eur J Comput Mech 18:3-4:393–418 Lecompte D, Cooreman S, Coppieters S, Vantomme J, Sol H, Debruyne D (2009) Parameter identification for anisotropic plasticity model using digital image correlation. Eur J Comput Mech 18:3-4:393–418
32.
go back to reference Nakano H, Hakoyama T, Kuwabara T (2017) Effect of the determination method of the material parameters on the accuracy of the hole expansion simulation for cold rolled steel sheet. In: The 20th international ESAFORM conference on material forming, Dublin, Ireland, 26-28 April, 2017 Nakano H, Hakoyama T, Kuwabara T (2017) Effect of the determination method of the material parameters on the accuracy of the hole expansion simulation for cold rolled steel sheet. In: The 20th international ESAFORM conference on material forming, Dublin, Ireland, 26-28 April, 2017
33.
go back to reference Pierron F, Grédiac M (2012) The virtual fields method. extracting constitutive mechanical parameters from full-field deformation measurements. Springer, Berlin Pierron F, Grédiac M (2012) The virtual fields method. extracting constitutive mechanical parameters from full-field deformation measurements. Springer, Berlin
34.
go back to reference Plunkett B, Lebesohn RA, Cazacu O, Barlat F (2006) Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater 54:4159–4169CrossRef Plunkett B, Lebesohn RA, Cazacu O, Barlat F (2006) Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater 54:4159–4169CrossRef
35.
go back to reference Rossi M, Pierron F (2012) Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields. Comput Mech 49:53–71CrossRefMATH Rossi M, Pierron F (2012) Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields. Comput Mech 49:53–71CrossRefMATH
36.
go back to reference Rossi M, Pierron F (2012) On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int J Solids Struct 49:420–435CrossRef Rossi M, Pierron F (2012) On the use of simulated experiments in designing tests for material characterization from full-field measurements. Int J Solids Struct 49:420–435CrossRef
37.
go back to reference Saai A, Dumoullin S, Hopperstad OS, Lademo OG (2013) Simulation of yield surfaces for aluminium sheets with rolling and recrystallization textures. Comput Mater Sci 67:424–433CrossRef Saai A, Dumoullin S, Hopperstad OS, Lademo OG (2013) Simulation of yield surfaces for aluminium sheets with rolling and recrystallization textures. Comput Mater Sci 67:424–433CrossRef
38.
go back to reference Tóth LS, Van Houtte P (1992) Discretization techniques for orientation distribution functions. Textures and Microstructures 19:229–244CrossRef Tóth LS, Van Houtte P (1992) Discretization techniques for orientation distribution functions. Textures and Microstructures 19:229–244CrossRef
39.
go back to reference Van Houtte P, Li S, Seefeldt M, Delannay L (2005) Deformation texture prediction: from the taylor model to the advanced lamel model. Int J Plast 21(3):589–624CrossRefMATH Van Houtte P, Li S, Seefeldt M, Delannay L (2005) Deformation texture prediction: from the taylor model to the advanced lamel model. Int J Plast 21(3):589–624CrossRefMATH
40.
go back to reference Von Mises R (1913) Mechanik der festen Korper un plastich deformablen Zustant. Gottingen Nachrichten. Math. Phys. Kl Von Mises R (1913) Mechanik der festen Korper un plastich deformablen Zustant. Gottingen Nachrichten. Math. Phys. Kl
41.
go back to reference Wittevrongel L, Debruyne D, Lomov S, Lava P (2016) Implementation of convergence in adaptive global digital image correlation. Exp Mech 56(5):797–811CrossRef Wittevrongel L, Debruyne D, Lomov S, Lava P (2016) Implementation of convergence in adaptive global digital image correlation. Exp Mech 56(5):797–811CrossRef
42.
go back to reference Yamanaka A, Hashimoto K, Kawaguchi J, Sakurai T, Kuwabara T (2015) Material modelling and forming simulation of 5182 aluminum alloy sheets using numerical biaxial tensile test based on homogenized crystal plasticity finite element method, vol 65. (in Japanese) Yamanaka A, Hashimoto K, Kawaguchi J, Sakurai T, Kuwabara T (2015) Material modelling and forming simulation of 5182 aluminum alloy sheets using numerical biaxial tensile test based on homogenized crystal plasticity finite element method, vol 65. (in Japanese)
43.
go back to reference Yoon JW, Barlat F, Dick RE, Chung K, Kang TJ (2004) Plane stress yield function for aluminum alloy sheetsdpart ii: Fe formulation and its implementation. Int J Plast 20:495–522CrossRefMATH Yoon JW, Barlat F, Dick RE, Chung K, Kang TJ (2004) Plane stress yield function for aluminum alloy sheetsdpart ii: Fe formulation and its implementation. Int J Plast 20:495–522CrossRefMATH
44.
go back to reference Zhang H, Diehl M, Roters F, Raabe D (2016) A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. Int J Plast 80:111–138CrossRef Zhang H, Diehl M, Roters F, Raabe D (2016) A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. Int J Plast 80:111–138CrossRef
45.
go back to reference Zhang K, Holmedal B, Hopperstad OS, Dumoulin S, Gawad J, Van Bael A, Van Houtte P (2015) Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification. Int J Plast 66:3–30CrossRef Zhang K, Holmedal B, Hopperstad OS, Dumoulin S, Gawad J, Van Bael A, Van Houtte P (2015) Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification. Int J Plast 66:3–30CrossRef
Metadata
Title
On the synergy between physical and virtual sheet metal testing: calibration of anisotropic yield functions using a microstructure-based plasticity model
Authors
S. Coppieters
T. Hakoyama
P. Eyckens
H. Nakano
A. Van Bael
D. Debruyne
T. Kuwabara
Publication date
30-10-2018
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 5/2019
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-018-1444-1

Other articles of this Issue 5/2019

International Journal of Material Forming 5/2019 Go to the issue

Premium Partners