Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 5/2017

08-11-2016

On the temperature dependency and reversibility of sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid

Authors: Lixin Mo, Li Yang, Zhenguo Wang, Qingbin Zhai, Zhengbo Li, Luhai Li

Published in: Journal of Materials Science: Materials in Electronics | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The temperature dependency and reversibility of the sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid (Ag-MPA) molecules, used in the printed temperature sensor, has been investigated. The microstructural evaluation, the FTIR spectra and thermal property analyses of the Ag-MPA films suggest co-existence of both weakly adsorbed as well as firmly adsorbed MPA molecules on the surface of Ag nanoparticles. The weakly adsorbed MPA molecules was to a great extent be desorbed and removed from the surfaces of silver nanoparticles when heated up to 180 °C for the first time. While the firmly adsorbed MPA molecules remain on the surfaces of silver nanoparticles even at higher temperature. Yet the firmly adsorbed MPA molecules are likely having gone through a transformation circle from/to the gauche and trans conformations in correspondence to a heating and cooling cycle, which results in temperature dependent and reversible sheet resistance. The MPA molecules in the gauche conformation are more densely packed on the surface of silver nanoparticles and can hinder the electron’s movability within the Ag-MPA film. While in the trans conformation with lower ‘surface space’ coverage by the MPA molecules, electrons move more freely within the film. Based on the temperature dependent nature, the fully printed temperature sensor using the Ag-MPA nanoparticles as the functional layer was made, of which the highest sensitivity is 5.12% °C−1 at 200 °C.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10, 3515–3535 (2014)CrossRef A. Kamyshny, S. Magdassi, Conductive nanomaterials for printed electronics. Small 10, 3515–3535 (2014)CrossRef
2.
go back to reference W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Paper-based nanosilver conductive ink. J. Mater. Sci. Mater. Electron. 24, 628–634 (2013)CrossRef W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Paper-based nanosilver conductive ink. J. Mater. Sci. Mater. Electron. 24, 628–634 (2013)CrossRef
3.
go back to reference B.Y. Ahn, E.B. Duoss, M.J. Motala, X.Y. Guo, S.I. Park, Y.J. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009)CrossRef B.Y. Ahn, E.B. Duoss, M.J. Motala, X.Y. Guo, S.I. Park, Y.J. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009)CrossRef
4.
go back to reference J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010)CrossRef J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, U.S. Schubert, Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446–8453 (2010)CrossRef
5.
go back to reference T. Yamada, K. Fukuhara, K. Matsuoka, H. Minemawari, J. Tsutsumi, N. Fukuda, K. Aoshima, S. Arai, Y. Makita, H. Kubo, T. Enomoto, T. Togashi, M. Kurihara, T. Hasegawa, Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nat. Commun. 7, 9 (2016)CrossRef T. Yamada, K. Fukuhara, K. Matsuoka, H. Minemawari, J. Tsutsumi, N. Fukuda, K. Aoshima, S. Arai, Y. Makita, H. Kubo, T. Enomoto, T. Togashi, M. Kurihara, T. Hasegawa, Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nat. Commun. 7, 9 (2016)CrossRef
6.
go back to reference J.K. Jiang, B. Bao, M.Z. Li, J.Z. Sun, C. Zhang, Y. Li, F.Y. Li, X. Yao, Y.L. Song, Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 28, 1420–1426 (2016)CrossRef J.K. Jiang, B. Bao, M.Z. Li, J.Z. Sun, C. Zhang, Y. Li, F.Y. Li, X. Yao, Y.L. Song, Fabrication of transparent multilayer circuits by inkjet printing. Adv. Mater. 28, 1420–1426 (2016)CrossRef
7.
go back to reference X.Q. Zhou, W. Li, M.L. Wu, S. Tang, D.Z. Liu, Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014)CrossRef X.Q. Zhou, W. Li, M.L. Wu, S. Tang, D.Z. Liu, Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks. Appl. Surf. Sci. 292, 537–543 (2014)CrossRef
8.
go back to reference P. Kanninen, C. Johans, J. Merta, K. Kontturi, Influence of ligand structure on the stability and oxidation of copper nanoparticles. J. Colloid Interface Sci. 318, 88–95 (2008)CrossRef P. Kanninen, C. Johans, J. Merta, K. Kontturi, Influence of ligand structure on the stability and oxidation of copper nanoparticles. J. Colloid Interface Sci. 318, 88–95 (2008)CrossRef
9.
go back to reference J. Natsuki, T. Abe, Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media. J. Colloid Interface Sci. 359, 19–23 (2011)CrossRef J. Natsuki, T. Abe, Synthesis of pure colloidal silver nanoparticles with high electroconductivity for printed electronic circuits: the effect of amines on their formation in aqueous media. J. Colloid Interface Sci. 359, 19–23 (2011)CrossRef
10.
go back to reference A.J. Lovinger, Development of electrical conduction in silver-filled epoxy adhesives. J. Adhes. 10, 1–15 (2008)CrossRef A.J. Lovinger, Development of electrical conduction in silver-filled epoxy adhesives. J. Adhes. 10, 1–15 (2008)CrossRef
11.
go back to reference G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72, 953–959 (1992)CrossRef G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72, 953–959 (1992)CrossRef
12.
go back to reference L.X. Mo, D.Z. Liu, W. Li, L.H. Li, L.C. Wang, X.Q. Zhou, Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films. Appl. Surf. Sci. 257, 5746–5753 (2011)CrossRef L.X. Mo, D.Z. Liu, W. Li, L.H. Li, L.C. Wang, X.Q. Zhou, Effects of dodecylamine and dodecanethiol on the conductive properties of nano-Ag films. Appl. Surf. Sci. 257, 5746–5753 (2011)CrossRef
13.
go back to reference F.C. Wu, D.Z. Liu, T.Y. Wang, W. Li, X.Q. Zhou, Different surface properties of l-arginine functionalized silver nanoparticles and their influence on the conductive and adhesive properties of nanosilver films. J. Mater. Sci. Mater. Electron. 26, 6781–6786 (2015)CrossRef F.C. Wu, D.Z. Liu, T.Y. Wang, W. Li, X.Q. Zhou, Different surface properties of l-arginine functionalized silver nanoparticles and their influence on the conductive and adhesive properties of nanosilver films. J. Mater. Sci. Mater. Electron. 26, 6781–6786 (2015)CrossRef
14.
go back to reference J. Liu, H. Ji, S. Wang, M. Li, The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink. J. Mater. Sci: Mater. Electron. (2016). doi:10.1007/s10854-016-5476-3 J. Liu, H. Ji, S. Wang, M. Li, The low temperature exothermic sintering of formic acid treated Cu nanoparticles for conductive ink. J. Mater. Sci: Mater. Electron. (2016). doi:10.​1007/​s10854-016-5476-3
15.
go back to reference P. Pulkkinen, J. Shan, K. Leppanen, A. Kansakoski, A. Laiho, M. Jarn, H. Tenhu, Poly(ethylene imine) and tetraethylenepentamine as protecting agents for metallic copper nanoparticles. ACS Appl. Mater. Interfaces 1, 519–525 (2009)CrossRef P. Pulkkinen, J. Shan, K. Leppanen, A. Kansakoski, A. Laiho, M. Jarn, H. Tenhu, Poly(ethylene imine) and tetraethylenepentamine as protecting agents for metallic copper nanoparticles. ACS Appl. Mater. Interfaces 1, 519–525 (2009)CrossRef
16.
go back to reference L.X. Mo, D.Z. Liu, X.Q. Zhou, L.H. Li, Preparation and conductive mechanism of the ink-jet printed nanosilver films for flexible display, in: 2009 2nd International Congress on Image and Signal Processing, CISP’09, October 17, 2009–October 19, 2009, (IEEE Computer Society, Tianjin University of Technology, Tianjin, 2009) L.X. Mo, D.Z. Liu, X.Q. Zhou, L.H. Li, Preparation and conductive mechanism of the ink-jet printed nanosilver films for flexible display, in: 2009 2nd International Congress on Image and Signal Processing, CISP’09, October 17, 2009–October 19, 2009, (IEEE Computer Society, Tianjin University of Technology, Tianjin, 2009)
17.
go back to reference Y.Q. Yong, T. Yonezawa, M. Matsubara, H. Tsukamoto, The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. J. Mater. Chem. C 3, 5890–5895 (2015)CrossRef Y.Q. Yong, T. Yonezawa, M. Matsubara, H. Tsukamoto, The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. J. Mater. Chem. C 3, 5890–5895 (2015)CrossRef
18.
go back to reference S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4, 1943–1948 (2010)CrossRef S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4, 1943–1948 (2010)CrossRef
19.
go back to reference M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5, 3354–3359 (2011)CrossRef M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5, 3354–3359 (2011)CrossRef
20.
go back to reference L.X. Mo, J. Ran, L. Yang, Y. Fang, Q.B. Zhai, L.H. Li, Flexible transparent conductive films combining flexographic printed silver grids with CNT coating. Nanotechnology 27, 065202 (2016)CrossRef L.X. Mo, J. Ran, L. Yang, Y. Fang, Q.B. Zhai, L.H. Li, Flexible transparent conductive films combining flexographic printed silver grids with CNT coating. Nanotechnology 27, 065202 (2016)CrossRef
21.
go back to reference H. Shirai, M.T. Nguyen, Y. Ishida, T. Yonezawa, A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. J. Mater. Chem. C 4, 2228–2234 (2016)CrossRef H. Shirai, M.T. Nguyen, Y. Ishida, T. Yonezawa, A new approach for additive-free room temperature sintering of conductive patterns using polymer-stabilized Sn nanoparticles. J. Mater. Chem. C 4, 2228–2234 (2016)CrossRef
22.
go back to reference B. Reiser, L. Gonzalez-Garcia, I. Kanelidis, J.H.M. Maurer, T. Kraus, Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics. Chem. Sci. 7, 4190–4196 (2016)CrossRef B. Reiser, L. Gonzalez-Garcia, I. Kanelidis, J.H.M. Maurer, T. Kraus, Gold nanorods with conjugated polymer ligands: sintering-free conductive inks for printed electronics. Chem. Sci. 7, 4190–4196 (2016)CrossRef
23.
go back to reference I. Jung, K. Shin, N.R. Kim, H.M. Lee, Synthesis of low-temperature-processable and highly conductive Ag ink by a simple ligand modification: the role of adsorption energy. J. Mater. Chem. C 1, 1855–1862 (2013)CrossRef I. Jung, K. Shin, N.R. Kim, H.M. Lee, Synthesis of low-temperature-processable and highly conductive Ag ink by a simple ligand modification: the role of adsorption energy. J. Mater. Chem. C 1, 1855–1862 (2013)CrossRef
24.
go back to reference W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Preparation and conductive mechanism of copper nanoparticles ink. J. Mater. Sci. Mater. Electron. 24, 5175–5182 (2013)CrossRef W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, Preparation and conductive mechanism of copper nanoparticles ink. J. Mater. Sci. Mater. Electron. 24, 5175–5182 (2013)CrossRef
25.
go back to reference S. Bhanushali, P. Ghosh, A. Ganesh, W.L. Cheng, 1D copper nanostructures: progress, challenges and opportunities. Small 11, 1232–1252 (2015)CrossRef S. Bhanushali, P. Ghosh, A. Ganesh, W.L. Cheng, 1D copper nanostructures: progress, challenges and opportunities. Small 11, 1232–1252 (2015)CrossRef
26.
go back to reference W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6, 1622–1628 (2014)CrossRef W.F. Shen, X.P. Zhang, Q.J. Huang, Q.S. Xu, W.J. Song, Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity. Nanoscale 6, 1622–1628 (2014)CrossRef
27.
go back to reference Z.L. Zhang, X.Y. Zhang, Z.Q. Xin, M.M. Deng, Y.Q. Wen, Y.L. Song, Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22, 425601 (2011)CrossRef Z.L. Zhang, X.Y. Zhang, Z.Q. Xin, M.M. Deng, Y.Q. Wen, Y.L. Song, Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics. Nanotechnology 22, 425601 (2011)CrossRef
28.
go back to reference A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)CrossRef A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)CrossRef
29.
go back to reference J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005)CrossRef J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005)CrossRef
30.
go back to reference L.L. Rouhana, M.D. Moussallem, J.B. Schlenoff, Adsorption of short-chain thiols and disulfides onto gold under defined mass transport conditions: coverage, kinetics, and mechanism. J. Am. Chem. Soc. 133, 16080–16091 (2011)CrossRef L.L. Rouhana, M.D. Moussallem, J.B. Schlenoff, Adsorption of short-chain thiols and disulfides onto gold under defined mass transport conditions: coverage, kinetics, and mechanism. J. Am. Chem. Soc. 133, 16080–16091 (2011)CrossRef
31.
go back to reference Y. Taniguchi, T. Takishita, T. Kawai, T. Nakashima, End-to-end self-assembly of semiconductor nanorods in water by using an amphiphilic surface design. Angew. Chem. Int. Edit. 55, 2083–2086 (2016)CrossRef Y. Taniguchi, T. Takishita, T. Kawai, T. Nakashima, End-to-end self-assembly of semiconductor nanorods in water by using an amphiphilic surface design. Angew. Chem. Int. Edit. 55, 2083–2086 (2016)CrossRef
32.
go back to reference R.K. Mendes, R.F. Carvalhal, L.T. Kubota, Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. J. Electroanal. Chem. 612, 164–172 (2008)CrossRef R.K. Mendes, R.F. Carvalhal, L.T. Kubota, Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. J. Electroanal. Chem. 612, 164–172 (2008)CrossRef
33.
go back to reference J.B. Shein, L.M.H. Lai, P.K. Eggers, M.N. Paddon-Row, J.J. Gooding, Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25, 11121–11128 (2009)CrossRef J.B. Shein, L.M.H. Lai, P.K. Eggers, M.N. Paddon-Row, J.J. Gooding, Formation of efficient electron transfer pathways by adsorbing gold nanoparticles to self-assembled monolayer modified electrodes. Langmuir 25, 11121–11128 (2009)CrossRef
34.
go back to reference Y. Li, Y. Wu, B.S. Ong, Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 127, 3266–3267 (2005)CrossRef Y. Li, Y. Wu, B.S. Ong, Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J. Am. Chem. Soc. 127, 3266–3267 (2005)CrossRef
35.
go back to reference N.R. Jana, X. Peng, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003)CrossRef N.R. Jana, X. Peng, Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003)CrossRef
36.
go back to reference C.N. Chen, C.P. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.T. Chen, I.G. Chen, Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature. Acta Mater. 60, 5914–5924 (2012)CrossRef C.N. Chen, C.P. Chen, T.Y. Dong, T.C. Chang, M.C. Chen, H.T. Chen, I.G. Chen, Using nanoparticles as direct-injection printing ink to fabricate conductive silver features on a transparent flexible PET substrate at room temperature. Acta Mater. 60, 5914–5924 (2012)CrossRef
37.
go back to reference S.Y. Kang, K. Kim, Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir 14, 226–230 (1998)CrossRef S.Y. Kang, K. Kim, Comparative study of dodecanethiol-derivatized silver nanoparticles prepared in one-phase and two-phase systems. Langmuir 14, 226–230 (1998)CrossRef
38.
go back to reference H. Hiramatsu, F.E. Osterloh, A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mat. 16, 2509–2511 (2004)CrossRef H. Hiramatsu, F.E. Osterloh, A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mat. 16, 2509–2511 (2004)CrossRef
39.
go back to reference A. Kudelski, Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering. J. Raman Spectrosc. 34, 853–862 (2003)CrossRef A. Kudelski, Structures of monolayers formed from different HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering. J. Raman Spectrosc. 34, 853–862 (2003)CrossRef
40.
go back to reference K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, Y. Li, C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005)CrossRef K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, Y. Li, C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005)CrossRef
41.
go back to reference D.S. Sidhaye, B.L.V. Prasad, Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: the “excluded” story of excess thiol. Chem. Mat. 22, 1680–1685 (2010)CrossRef D.S. Sidhaye, B.L.V. Prasad, Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: the “excluded” story of excess thiol. Chem. Mat. 22, 1680–1685 (2010)CrossRef
42.
go back to reference N. Sandhyarani, M.P. Antony, G.P. Selvam, T. Pradeep, Melting of monolayer protected cluster superlattices. J. Chem. Phys. 113, 9794–9803 (2000)CrossRef N. Sandhyarani, M.P. Antony, G.P. Selvam, T. Pradeep, Melting of monolayer protected cluster superlattices. J. Chem. Phys. 113, 9794–9803 (2000)CrossRef
43.
go back to reference A. Kudelski, Raman and electrochemical characterization of 2-mercaptoethanesulfonate monolayers on silver: a comparison with monolayers of 3-mercaptopropionic acid. Langmuir 18, 4741–4747 (2002)CrossRef A. Kudelski, Raman and electrochemical characterization of 2-mercaptoethanesulfonate monolayers on silver: a comparison with monolayers of 3-mercaptopropionic acid. Langmuir 18, 4741–4747 (2002)CrossRef
Metadata
Title
On the temperature dependency and reversibility of sheet resistance of silver nanoparticles covered by 3-mercaptopropionic acid
Authors
Lixin Mo
Li Yang
Zhenguo Wang
Qingbin Zhai
Zhengbo Li
Luhai Li
Publication date
08-11-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 5/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6017-9

Other articles of this Issue 5/2017

Journal of Materials Science: Materials in Electronics 5/2017 Go to the issue