Skip to main content
Top
Published in: Acta Mechanica 6/2020

04-03-2020 | Original Paper

On the transverse indentation moduli of high-performance KM2 single fibers using a curved area function

Authors: Prashanth Turla, Hinal Patel, Assimina A. Pelegri

Published in: Acta Mechanica | Issue 6/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanoindentation of single microscale fibers is a challenging task due to the dimensional similarity of the probing instruments to the single-fiber cross sections. Algorithms customarily used in nanoindentation equipment assume that the indentation occurs in flat surfaces, thus simplifying the local geometry and approximating material properties in curved specimens. A modified Curved Area Function (mCAF) is developed using finite element analysis and tested using nanoindentation measurements of high-performance single microfibers. The mCAF accounts for the dimensions and curvature in the transverse direction of the cylindrical microfiber in conjunction with the contact depth and the impression of the indented area. The transverse direction indentation modulus of a \(12\,\upmu \hbox {m}\) of \(\hbox {Kevlar}^{\textregistered }\) KM2 fiber was estimated as \(7.76\, \pm \,0.22\) GPa. The computational results were corroborated with experimental measurements performed on KM2 single fibers and agreed with literature findings that assumed minor differences in testing equipment, area analysis, and projected surface area. Two geometry-related coefficients \( C_{0}\) and \(C_{1}\) were determined that facilitate simulation of fiber nanoindentations with diameters of \(d = 7, 15, 30, 40,\) and \(50\,\upmu \hbox {m}\) with indentation depths up to, and including, \(2\,\upmu \hbox {m}\). The mCAF provided a narrow measurement error of \(\pm \,0.22\) GPa (2.8%) when compared to published studies using the semi-infinite plane approximation, reinforcing the suitability of the developed model.
Literature
1.
go back to reference Bencomo-Cisneros, J.A., Tejeda-Ochoa, A., García-Estrada, J.A., Herrera-Ramírez, C.A., Hurtado-Macías, A., Martínez-Sánchez, R., Herrera-Ramírez, J.M.: Characterization of Kevlar-29 fibers by tensile tests and nanoindentation. J. Alloys Compd. 536, S456–S459 (2012)CrossRef Bencomo-Cisneros, J.A., Tejeda-Ochoa, A., García-Estrada, J.A., Herrera-Ramírez, C.A., Hurtado-Macías, A., Martínez-Sánchez, R., Herrera-Ramírez, J.M.: Characterization of Kevlar-29 fibers by tensile tests and nanoindentation. J. Alloys Compd. 536, S456–S459 (2012)CrossRef
2.
go back to reference Bunsell, A.R.: The tensile and fatigue behaviour of Kevlar-49 (PRD-49) fibre. J. Mater. Sci. 10, 1300–1308 (1975)CrossRef Bunsell, A.R.: The tensile and fatigue behaviour of Kevlar-49 (PRD-49) fibre. J. Mater. Sci. 10, 1300–1308 (1975)CrossRef
3.
go back to reference Hadley, D.W., Ward, I.M., Ward, J.: The transverse compression of anisotropic fiber monofilaments. Proc. R. Soc. A 285, 275–286 (1965) Hadley, D.W., Ward, I.M., Ward, J.: The transverse compression of anisotropic fiber monofilaments. Proc. R. Soc. A 285, 275–286 (1965)
4.
go back to reference Pinnock, P.R., Ward, I.M., Wolfe, J.M.: The compression of anisotropic fiber monofilaments II. Proc. R. Soc. A 291, 267–278 (1966) Pinnock, P.R., Ward, I.M., Wolfe, J.M.: The compression of anisotropic fiber monofilaments II. Proc. R. Soc. A 291, 267–278 (1966)
5.
go back to reference Rector, J.H., Slaman, M., Verdoold, R., Iannuzzi, D., Beekmans, S.V.: Optimization of the batch production of silicon fiber-top MEMS devices. J. Micromech. Microeng. 27, 1–10 (2017)CrossRef Rector, J.H., Slaman, M., Verdoold, R., Iannuzzi, D., Beekmans, S.V.: Optimization of the batch production of silicon fiber-top MEMS devices. J. Micromech. Microeng. 27, 1–10 (2017)CrossRef
6.
go back to reference Swadener, J.G., George, E.P., Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef Swadener, J.G., George, E.P., Pharr, G.M.: The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef
7.
go back to reference Poon, B., Rittel, D., Ravichandran, G.: An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 45, 6018–6033 (2008)CrossRef Poon, B., Rittel, D., Ravichandran, G.: An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Struct. 45, 6018–6033 (2008)CrossRef
8.
go back to reference Bhushan, B.: Depth-sensing nanoindentation measurement techniques and applications. Microsyst. Technol. 23, 1595–1649 (2017)CrossRef Bhushan, B.: Depth-sensing nanoindentation measurement techniques and applications. Microsyst. Technol. 23, 1595–1649 (2017)CrossRef
9.
go back to reference Wierenga, P.E., Franken, A.J.J.: Ultramicroindentation apparatus for the mechanical characterization of thin films. J. Appl. Phys. 55, 4244–4247 (1984)CrossRef Wierenga, P.E., Franken, A.J.J.: Ultramicroindentation apparatus for the mechanical characterization of thin films. J. Appl. Phys. 55, 4244–4247 (1984)CrossRef
10.
go back to reference Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)CrossRef Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992)CrossRef
11.
go back to reference Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)CrossRef Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601–609 (1986)CrossRef
12.
go back to reference Garrido Maneiro, M.A., Rodríguez, J.: Pile-up effect on nanoindentation tests with spherical-conical tips. Scr. Mater. 52, 593–598 (2005)CrossRef Garrido Maneiro, M.A., Rodríguez, J.: Pile-up effect on nanoindentation tests with spherical-conical tips. Scr. Mater. 52, 593–598 (2005)CrossRef
13.
go back to reference Sargent, P.M., Page, T.F.: The possible effect of elastic recovery on the microhardness of anisotropic materials. Scr. Metall. 15, 245–250 (1981)CrossRef Sargent, P.M., Page, T.F.: The possible effect of elastic recovery on the microhardness of anisotropic materials. Scr. Metall. 15, 245–250 (1981)CrossRef
14.
go back to reference Kalman, D.P., Merrill, R.L., Wagner, N.J., Wetzel, E.D.: Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1, 2602–2612 (2009)CrossRef Kalman, D.P., Merrill, R.L., Wagner, N.J., Wetzel, E.D.: Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1, 2602–2612 (2009)CrossRef
15.
go back to reference Decker, M.J., Egres, R.G., Wetzel, E.D., Wagner, N.J.: Low velocity ballistic properties of shear thickening fluid (STF)-fabric composites. In: Proceedings of 22nd International Symposium International Symposium on Ballistics, pp. 18–25 (2005) Decker, M.J., Egres, R.G., Wetzel, E.D., Wagner, N.J.: Low velocity ballistic properties of shear thickening fluid (STF)-fabric composites. In: Proceedings of 22nd International Symposium International Symposium on Ballistics, pp. 18–25 (2005)
16.
go back to reference Riekel, C., Davies, R.J.: Applications of synchrotron radiation micro-focus techniques to the study of polymer and biopolymer fibers. Curr. Opin. Colloid Interface Sci. 9, 396–403 (2005)CrossRef Riekel, C., Davies, R.J.: Applications of synchrotron radiation micro-focus techniques to the study of polymer and biopolymer fibers. Curr. Opin. Colloid Interface Sci. 9, 396–403 (2005)CrossRef
17.
go back to reference Li, S.F.Y., McGhie, A.J., Tang, S.L.: Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J. Vac. Sci. Technol. A 12, 1891–1894 (1994)CrossRef Li, S.F.Y., McGhie, A.J., Tang, S.L.: Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J. Vac. Sci. Technol. A 12, 1891–1894 (1994)CrossRef
18.
go back to reference Gindl, W., Schöberl, T.: The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Compos. Part A 35, 1345–1349 (2004)CrossRef Gindl, W., Schöberl, T.: The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Compos. Part A 35, 1345–1349 (2004)CrossRef
19.
go back to reference Vlassak, J.J., Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223–1245 (1994)CrossRef Vlassak, J.J., Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223–1245 (1994)CrossRef
20.
go back to reference Pharr, G.M., Herbert, E.G., Gao, Y.: The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271–292 (2010)CrossRef Pharr, G.M., Herbert, E.G., Gao, Y.: The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271–292 (2010)CrossRef
21.
go back to reference Ghanbari, S., Bahr, D.F.: An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials. J. Mater. Res. 34(7), 1121–1129 (2019)CrossRef Ghanbari, S., Bahr, D.F.: An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials. J. Mater. Res. 34(7), 1121–1129 (2019)CrossRef
22.
go back to reference Cheng, M., Chen, W., Weerasooriya, T.: Mechanical Properties of Kevlar®KM2 Single Fiber. J. Eng. Mater. Technol. 127, 197–203 (2005)CrossRef Cheng, M., Chen, W., Weerasooriya, T.: Mechanical Properties of Kevlar®KM2 Single Fiber. J. Eng. Mater. Technol. 127, 197–203 (2005)CrossRef
23.
go back to reference Deteresa, S.J., Allen, S.R., Farris, R.J., Porter, R.S.: Compressive and torsional behaviour of Kevlar 49 fibre. J. Mater. Sci. 19, 57–72 (1984)CrossRef Deteresa, S.J., Allen, S.R., Farris, R.J., Porter, R.S.: Compressive and torsional behaviour of Kevlar 49 fibre. J. Mater. Sci. 19, 57–72 (1984)CrossRef
24.
go back to reference McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Evaluation of the three-dimensional properties of Kevlar across length scales. J. Mater. Res. 27(14), 1824–1837 (2012)CrossRef McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Evaluation of the three-dimensional properties of Kevlar across length scales. J. Mater. Res. 27(14), 1824–1837 (2012)CrossRef
25.
go back to reference McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Nonlinear indentation of fibers. J. Mater. Res. 27(1), 197–213 (2012)CrossRef McAllister, Q.P., Gillespie Jr., J.W., VanLandingham, M.R.: Nonlinear indentation of fibers. J. Mater. Res. 27(1), 197–213 (2012)CrossRef
26.
go back to reference Cole, D.P., Strawhecker, K.E.: An improved instrumented indentation technique for single microfibers. J. Mater. Res. 29(9), 1104–1112 (2014)CrossRef Cole, D.P., Strawhecker, K.E.: An improved instrumented indentation technique for single microfibers. J. Mater. Res. 29(9), 1104–1112 (2014)CrossRef
27.
go back to reference Kawabata, S.: Measurement of the transverse mechanical properties of high-performance fibres. J. Text. Inst. 81, 432–447 (1990)CrossRef Kawabata, S.: Measurement of the transverse mechanical properties of high-performance fibres. J. Text. Inst. 81, 432–447 (1990)CrossRef
28.
go back to reference Leal, A.A., Deitzel, J.M., Gillespie Jr., J.W.: Compressive strength analysis for high performance fibers with different modulus in tension and compression. J. Compos. Mater. 43, 661–674 (2009)CrossRef Leal, A.A., Deitzel, J.M., Gillespie Jr., J.W.: Compressive strength analysis for high performance fibers with different modulus in tension and compression. J. Compos. Mater. 43, 661–674 (2009)CrossRef
29.
go back to reference Singletary, J., Davis, H., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part I Single fiber transverse compression testing. J. Mater. Sci. 35, 573–581 (2000)CrossRef Singletary, J., Davis, H., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part I Single fiber transverse compression testing. J. Mater. Sci. 35, 573–581 (2000)CrossRef
30.
go back to reference Singletary, J., Davis, H., Song, Y., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part II Fiber transverse structure. J. Mater. Sci. 35, 583–592 (2000)CrossRef Singletary, J., Davis, H., Song, Y., Ramasubramanian, M.K., Knoff, W.: The transverse compression of PPTA fibers Part II Fiber transverse structure. J. Mater. Sci. 35, 583–592 (2000)CrossRef
31.
go back to reference Raju, H., Pelegri, A.A.: Experimental investigation of transverse mechanical properties of high-performance Kevlar KM2 single fiber. In: ASME 2017 International Mechanical Engineering Congress and Exposition V014T11A045 (2017) Raju, H., Pelegri, A.A.: Experimental investigation of transverse mechanical properties of high-performance Kevlar KM2 single fiber. In: ASME 2017 International Mechanical Engineering Congress and Exposition V014T11A045 (2017)
32.
go back to reference Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)CrossRef Li, X., Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36 (2002)CrossRef
33.
go back to reference Pharr, G.M., Strader, J.H., Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653–666 (2009)CrossRef Pharr, G.M., Strader, J.H., Oliver, W.C.: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24, 653–666 (2009)CrossRef
34.
go back to reference Hanson, M.T.: The elastic field for conical indentation including sliding friction for transverse isotropy. J. Appl. Mech. 59, S123–S130 (1992)CrossRef Hanson, M.T.: The elastic field for conical indentation including sliding friction for transverse isotropy. J. Appl. Mech. 59, S123–S130 (1992)CrossRef
35.
go back to reference Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transverse isotropy. J. Tribol. 114, 606–611 (1992)CrossRef Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transverse isotropy. J. Tribol. 114, 606–611 (1992)CrossRef
36.
go back to reference Chicot, D., Yetna N’Jock, M., Puchi-Cabrera, E.S., Iost, A., Staia, M.H., Louis, G., Bouscarrat, G., Aumaitre, R.: A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film. Thin Solid Films 558, 259–266 (2014)CrossRef Chicot, D., Yetna N’Jock, M., Puchi-Cabrera, E.S., Iost, A., Staia, M.H., Louis, G., Bouscarrat, G., Aumaitre, R.: A contact area function for Berkovich nanoindentation: application to hardness determination of a TiHfCN thin film. Thin Solid Films 558, 259–266 (2014)CrossRef
37.
go back to reference Sakharova, N.A., Fernandes, J.V., Antunes, J.M., Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095–1104 (2009)CrossRef Sakharova, N.A., Fernandes, J.V., Antunes, J.M., Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095–1104 (2009)CrossRef
38.
go back to reference Briscoe, B.J., Fiori, L., Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D Appl. Phys. 31, 2395–2405 (1998)CrossRef Briscoe, B.J., Fiori, L., Pelillo, E.: Nano-indentation of polymeric surfaces. J. Phys. D Appl. Phys. 31, 2395–2405 (1998)CrossRef
39.
go back to reference Wang, J.S., Zheng, X.J., Zheng, H., Zhu, Z., Song, S.T.: Evaluation of the substrate effect on indentation behavior of film/substrate system. Appl. Surf. Sci. 256, 5998–6002 (2010)CrossRef Wang, J.S., Zheng, X.J., Zheng, H., Zhu, Z., Song, S.T.: Evaluation of the substrate effect on indentation behavior of film/substrate system. Appl. Surf. Sci. 256, 5998–6002 (2010)CrossRef
40.
go back to reference Jiang, W.G., Su, J.J., Feng, X.Q.: Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75, 4965–4972 (2008)CrossRef Jiang, W.G., Su, J.J., Feng, X.Q.: Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75, 4965–4972 (2008)CrossRef
41.
go back to reference Nano Test Vantage User Manual, Indenter Area Function, Micro Materials Ltd Excellence in Nano-mechanics Nano Test Vantage User Manual, Indenter Area Function, Micro Materials Ltd Excellence in Nano-mechanics
42.
go back to reference Sahin, K., Clawson, J.K., Singletary, J., Horner, S., Zheng, J., Pelegri, A.A., Chasiotis, I.: Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymer 140, 96–106 (2018)CrossRef Sahin, K., Clawson, J.K., Singletary, J., Horner, S., Zheng, J., Pelegri, A.A., Chasiotis, I.: Limiting role of crystalline domain orientation on the modulus and strength of aramid fibers. Polymer 140, 96–106 (2018)CrossRef
43.
go back to reference Swadener, J.G., Pharr, G.M.: Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag. A 81, 447–466 (2001)CrossRef Swadener, J.G., Pharr, G.M.: Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos. Mag. A 81, 447–466 (2001)CrossRef
Metadata
Title
On the transverse indentation moduli of high-performance KM2 single fibers using a curved area function
Authors
Prashanth Turla
Hinal Patel
Assimina A. Pelegri
Publication date
04-03-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 6/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02645-3

Other articles of this Issue 6/2020

Acta Mechanica 6/2020 Go to the issue

Premium Partners