Skip to main content
Top

2025 | OriginalPaper | Chapter

On the Use of Symbolic Regression for Population-Based Modelling of Structures

Authors : G. Tsialiamanis, N. Dervilis, K. Worden

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modelling of structures is an important tool for decision-making regarding infrastructure. In the absence of sufficient knowledge of the physical phenomena that affect the structure, one can follow a data-driven approach to model its behaviour, relying exclusively on data acquired from it. However, a common problem of this approach is the scarcity of data or biased data. To deal with these two problems, approaches have been considered to transfer knowledge via machine learning models from one domain to another. The current work considers the case of population-based structural health monitoring (PBSHM) of structures. Such an approach is motivated by the common physics that dictates the behaviour of similar structures, which could offer an opportunity to exploit information from a population to create more robust and trustworthy models of data-poor structures of the same population. More specifically, the approach followed here is that of symbolic regression and the transfer is attempted between an extensively monitored structure and a data-poor structure for a regression application. The methodology is applied in a prognosis problem of crack growth in metal plates, and the results reveal the potential of symbolic regression to perform knowledge transfer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bathe, K.J.: Finite Element Procedures (2006) Bathe, K.J.: Finite Element Procedures (2006)
2.
go back to reference Farrar, C., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, New York (2011) Farrar, C., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, New York (2011)
3.
go back to reference Rytter, A.: Vibrational Based Inspection of Civil Engineering Structures. PhD thesis, Aalborg University, Denmark (1993) Rytter, A.: Vibrational Based Inspection of Civil Engineering Structures. PhD thesis, Aalborg University, Denmark (1993)
4.
go back to reference Worden, K., Manson, G., Allman, D.: Experimental validation of a structural health monitoring methodology: Part I. Novelty detection on a laboratory structure. J. Sound Vib. 259(2), 323–343 (2003) Worden, K., Manson, G., Allman, D.: Experimental validation of a structural health monitoring methodology: Part I. Novelty detection on a laboratory structure. J. Sound Vib. 259(2), 323–343 (2003)
5.
go back to reference Agathos, K., Chatzi, E., Bordas, S.: Multiple crack detection in 3D using a stable XFEM and global optimization. Comput. Mech. 62, 835–852 (2018)MathSciNetCrossRef Agathos, K., Chatzi, E., Bordas, S.: Multiple crack detection in 3D using a stable XFEM and global optimization. Comput. Mech. 62, 835–852 (2018)MathSciNetCrossRef
6.
go back to reference Manson, G., Worden, K., Allman, D.: Experimental validation of a structural health monitoring methodology: Part III. damage location on an aircraft wing. J. Sound Vib. 259(2), 365–385 (2003) Manson, G., Worden, K., Allman, D.: Experimental validation of a structural health monitoring methodology: Part III. damage location on an aircraft wing. J. Sound Vib. 259(2), 365–385 (2003)
7.
go back to reference Cranmer, M.: Interpretable machine learning for science with PySR and SymbolicRegression. jl. arXiv preprint arXiv:2305.01582 (2023) Cranmer, M.: Interpretable machine learning for science with PySR and SymbolicRegression. jl. arXiv preprint arXiv:2305.01582 (2023)
8.
go back to reference Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)CrossRef Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021)CrossRef
9.
go back to reference Rasmussen, C.: Gaussian processes in machine learning. In: Summer School on Machine Learning, pp. 63–71. Springer, Berlin (2003) Rasmussen, C.: Gaussian processes in machine learning. In: Summer School on Machine Learning, pp. 63–71. Springer, Berlin (2003)
10.
go back to reference Deering, S., Manson, G., Worden, K., Allen, D., Farrar, C., Lombardo, J.: Syndromic surveillance as a paradigm for SHM data fusion. In: 4th European Workshop on Structural Health Monitoring, pp. 998–1014 (2008) Deering, S., Manson, G., Worden, K., Allen, D., Farrar, C., Lombardo, J.: Syndromic surveillance as a paradigm for SHM data fusion. In: 4th European Workshop on Structural Health Monitoring, pp. 998–1014 (2008)
11.
go back to reference Gardner, P., Bull, L., Gosliga, J., Dervilis, N., Cross, E., Papatheou, E., Worden, K.: Population-based structural health monitoring. In: Structural Health Monitoring Based on Data Science Techniques, pp. 413–435 (2022) Gardner, P., Bull, L., Gosliga, J., Dervilis, N., Cross, E., Papatheou, E., Worden, K.: Population-based structural health monitoring. In: Structural Health Monitoring Based on Data Science Techniques, pp. 413–435 (2022)
12.
go back to reference Dardeno, T., Bull, L., Mills, R., Dervilis, N., Worden, K.: Modelling variability in vibration-based PBSHM via a generalised population form. J. Sound Vib. 538, 117227 (2022)CrossRef Dardeno, T., Bull, L., Mills, R., Dervilis, N., Worden, K.: Modelling variability in vibration-based PBSHM via a generalised population form. J. Sound Vib. 538, 117227 (2022)CrossRef
13.
go back to reference Weiss, K., Khoshgoftaar, T., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016)CrossRef Weiss, K., Khoshgoftaar, T., Wang, D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016)CrossRef
14.
go back to reference Brennan, D., Rogers, T., Cross, E., Worden, K.: On quantifying the similarity of structures via a graph neural network for population-based structural health monitoring. In: Proceedings of ISMA2022 Including USD2022. KU Leuven, Belgium (2022) Brennan, D., Rogers, T., Cross, E., Worden, K.: On quantifying the similarity of structures via a graph neural network for population-based structural health monitoring. In: Proceedings of ISMA2022 Including USD2022. KU Leuven, Belgium (2022)
15.
go back to reference Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006) Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
16.
go back to reference Corbetta, M., Sbarufatti, C., Manes, A., Giglio, M.: On dynamic state-space models for fatigue-induced structural degradation. Int. J. Fatigue 61, 202–219 (2014)CrossRef Corbetta, M., Sbarufatti, C., Manes, A., Giglio, M.: On dynamic state-space models for fatigue-induced structural degradation. Int. J. Fatigue 61, 202–219 (2014)CrossRef
17.
go back to reference Sbarufatti, C., Manes, A., Giglio, M.: Performance optimization of a diagnostic system based upon a simulated strain field for fatigue damage characterization. Mech. Syst. Signal Process. 40(2), 667–690 (2013)CrossRef Sbarufatti, C., Manes, A., Giglio, M.: Performance optimization of a diagnostic system based upon a simulated strain field for fatigue damage characterization. Mech. Syst. Signal Process. 40(2), 667–690 (2013)CrossRef
Metadata
Title
On the Use of Symbolic Regression for Population-Based Modelling of Structures
Authors
G. Tsialiamanis
N. Dervilis
K. Worden
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_11