Skip to main content
Top

2024 | OriginalPaper | Chapter

On the Use of the Generating Series for the Impulse Response of Duffing’s Equation

Authors : T. Gowdridge, G. Manson, N. Dervilis, K. Worden

Published in: Nonlinear Structures & Systems, Vol. 1

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Traditionally, solving the Volterra series for nonlinear differential equations subject to an impulse excitation warrants the use of contour integration or a method of exponential inputs. Both of these solutions may be problematic when implemented on a computer and involve error-prone calculations when performed by hand. This chapter aims to address these issues by presenting a computer-based approach for the impulse response of a nonlinear oscillator with quadratic and cubic stiffness terms.
The generating-series method offers a technique to transform nonlinear differential equations with polynomial nonlinearities into a domain where the calculus problem is converted into an algebraic and combinatorial problem. Within this transformed domain, an iterative scheme determines higher-order Volterra kernels, and the nonlinear terms are expanded using the shuffle product. The generating series is then converted back into the time domain. This chapter showcases the computation of the first six terms in the Volterra series expansion and provides an error analysis by comparing the results to numerical approximations. The findings presented in this chapter contribute to the broader field of nonlinear dynamics and modal analysis; namely, the proposed method not only enhances the understanding of Duffing’s equation but also presents a practical tool for analysing nonlinear differential equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Chipperfield, J.R.: Numerical Recipes—The Art of Scientific Computing. Cambridge University Press, Cambridge (1986) Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., Chipperfield, J.R.: Numerical Recipes—The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)
2.
go back to reference Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bulletin de la Société Mathématique de France 109, 3–40 (1981)MathSciNetCrossRef Fliess, M.: Fonctionnelles causales non linéaires et indéterminées non commutatives. Bulletin de la Société Mathématique de France 109, 3–40 (1981)MathSciNetCrossRef
3.
go back to reference Fliess, M., Lamnabhi, M., Lamnabhi-Lagarrigue, F.: An algebraic approach to nonlinear functional expansions. Trans. Circuits Syst. 30(8), 554–570 (1983)MathSciNetCrossRef Fliess, M., Lamnabhi, M., Lamnabhi-Lagarrigue, F.: An algebraic approach to nonlinear functional expansions. Trans. Circuits Syst. 30(8), 554–570 (1983)MathSciNetCrossRef
4.
go back to reference Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Blackie & Son Limited, Glasgow (1930) Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations. Blackie & Son Limited, Glasgow (1930)
5.
go back to reference Schetzen, M.: Nonlinear system modeling based on the Wiener theory. Proc. IEEE 69(12), 1557–1573 (1981)CrossRef Schetzen, M.: Nonlinear system modeling based on the Wiener theory. Proc. IEEE 69(12), 1557–1573 (1981)CrossRef
6.
go back to reference Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. Institute of Physics. CRC Press, Boca Raton (2001)CrossRef Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics: Detection, Identification and Modelling. Institute of Physics. CRC Press, Boca Raton (2001)CrossRef
7.
go back to reference Manson, G., Worden, K., Reed, P.I.: Analysis of nonlinear system response to an impulse excitation. In: Nonlinear Dynamics, Volume 2: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, pp. 297–308. Springer, Berlin (2014) Manson, G., Worden, K., Reed, P.I.: Analysis of nonlinear system response to an impulse excitation. In: Nonlinear Dynamics, Volume 2: Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, pp. 297–308. Springer, Berlin (2014)
8.
go back to reference Worden, K., Manson, G., Tomlinson, G.R.: A harmonic probing algorithm for the multi-input Volterra series. J. Sound Vib. 201(1), 67–84 (1997)MathSciNetCrossRef Worden, K., Manson, G., Tomlinson, G.R.: A harmonic probing algorithm for the multi-input Volterra series. J. Sound Vib. 201(1), 67–84 (1997)MathSciNetCrossRef
9.
go back to reference Bedrosian, E., Rice, S.O.: The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc. IEEE 59(12), 1688–1707 (1971)MathSciNetCrossRef Bedrosian, E., Rice, S.O.: The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc. IEEE 59(12), 1688–1707 (1971)MathSciNetCrossRef
10.
go back to reference Lamnabhi-Lagarrigue, F., Lamnabhi, M.: Algebraic computation of the solution of some nonlinear differential equations. In: European Computer Algebra Conference, pp. 204–211. Springer, Berlin (1982) Lamnabhi-Lagarrigue, F., Lamnabhi, M.: Algebraic computation of the solution of some nonlinear differential equations. In: European Computer Algebra Conference, pp. 204–211. Springer, Berlin (1982)
12.
go back to reference Duffing, G.: Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und ihre technische Bedeutung. F. Vieweg & Sohn (1918) Duffing, G.: Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und ihre technische Bedeutung. F. Vieweg & Sohn (1918)
13.
go back to reference Dirac, P.: The Principles of Quantum Mechanics. Oxford University press, Oxford (1930) Dirac, P.: The Principles of Quantum Mechanics. Oxford University press, Oxford (1930)
14.
go back to reference Lamnabhi, M.: Functional analysis of nonlinear circuits: a generating power series approach. In: IEE Proceedings H (Microwaves, Antennas and Propagation), vol. 133, pp. 375–384. IET, London (1986). Lamnabhi, M.: Functional analysis of nonlinear circuits: a generating power series approach. In: IEE Proceedings H (Microwaves, Antennas and Propagation), vol. 133, pp. 375–384. IET, London (1986).
15.
go back to reference Graham, R.L., Knuth, D.E., Patashnik, O., Liu, S.: Concrete mathematics: a foundation for computer science. Comput. Phys. 3(5), 340–342 (1989)CrossRef Graham, R.L., Knuth, D.E., Patashnik, O., Liu, S.: Concrete mathematics: a foundation for computer science. Comput. Phys. 3(5), 340–342 (1989)CrossRef
Metadata
Title
On the Use of the Generating Series for the Impulse Response of Duffing’s Equation
Authors
T. Gowdridge
G. Manson
N. Dervilis
K. Worden
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-69409-7_22