Skip to main content
Top
Published in:
Cover of the book

2024 | OriginalPaper | Chapter

One-Dimensional Nanocarbon for Electrochemical Energy Applications

Authors : Pratik Patel, Rutu Patel, Felipe M. de Souza, Ram K. Gupta

Published in: NanoCarbon: A Wonder Material for Energy Applications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The storage and generation of energy through sustainable ways is one of the top priorities of modern society to lead to a more sustainable future. For that, there is focused research directed at optimizing energy storage devices such as supercapacitors and batteries and energy generation devices such as fuel cells. Some of the most notable materials that are utilized as electrode components are nanocarbon-based materials. This chapter is focused on the uses of 1D carbon-based nanomaterials such as carbon nanotubes (CNT), carbon nanofibers (CNF), carbon nanoribbons (CNR) along with the derivative structures from these nanomaterials. The discussion is focused on the field of energy storage and generation. For that, an introductory section covers the concepts and aspects of 1D carbon nanomaterials. Following that, a discussion regarding the main synthetical methods is provided. The third section is subdivided into three topics related to the application of 1D carbon nanomaterials in the development of electrodes for energy storage devices (i.e., supercapacitors and batteries) and energy generation (i.e., fuel cells). The discussion is conducted through recent works from the literature. Through that, the reader can understand the main nuances and aspects that influence the properties of 1D carbon nanomaterials which can assist in the development of novel ideas. Lastly, an outlook is provided that summarizes the main goals and current challenges related to the use of 1D carbon nanomaterials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Halkos, G.E., Gkampoura, E.-C.: Reviewing usage, potentials, and limitations of renewable energy sources., Energies 13 (2020) Halkos, G.E., Gkampoura, E.-C.: Reviewing usage, potentials, and limitations of renewable energy sources., Energies 13 (2020)
2.
go back to reference Saleh, T.A.: Nanomaterials: classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067 (2020)CrossRef Saleh, T.A.: Nanomaterials: classification, properties, and environmental toxicities. Environ. Technol. Innov. 20, 101067 (2020)CrossRef
3.
go back to reference Ni, J., Li, Y.: Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6, 1600278 (2016)CrossRef Ni, J., Li, Y.: Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 6, 1600278 (2016)CrossRef
4.
go back to reference Kong, D., Gao, Y., Xiao, Z., Xu, X., Li, X., Zhi, L.: Rational design of carbon-rich materials for energy storage and conversion. Adv. Mater. 31, 1804973 (2019)CrossRef Kong, D., Gao, Y., Xiao, Z., Xu, X., Li, X., Zhi, L.: Rational design of carbon-rich materials for energy storage and conversion. Adv. Mater. 31, 1804973 (2019)CrossRef
5.
go back to reference Hu, C., Lin, Y., Connell, J.W., Cheng, H.-M., Gogotsi, Y., Titirici, M.-M., Dai, L.: Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31, 1806128 (2019)CrossRef Hu, C., Lin, Y., Connell, J.W., Cheng, H.-M., Gogotsi, Y., Titirici, M.-M., Dai, L.: Carbon-based metal-free catalysts for energy storage and environmental remediation. Adv. Mater. 31, 1806128 (2019)CrossRef
6.
go back to reference Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)PubMedCrossRef Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., Zhang, H.: Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)PubMedCrossRef
7.
go back to reference Huang, X., Yu, H., Tan, H., Zhu, J., Zhang, W., Wang, C., Zhang, J., Wang, Y., Lv, Y., Zeng, Z., Liu, D., Ding, J., Zhang, Q., Srinivasan, M., Ajayan, P.M., Hng, H.H., Yan, Q.: Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-oxygen batteries. Adv. Funct. Mater. 24, 6516–6523 (2014)CrossRef Huang, X., Yu, H., Tan, H., Zhu, J., Zhang, W., Wang, C., Zhang, J., Wang, Y., Lv, Y., Zeng, Z., Liu, D., Ding, J., Zhang, Q., Srinivasan, M., Ajayan, P.M., Hng, H.H., Yan, Q.: Carbon nanotube-encapsulated noble metal nanoparticle hybrid as a cathode material for Li-oxygen batteries. Adv. Funct. Mater. 24, 6516–6523 (2014)CrossRef
8.
go back to reference Yang, H., Wang, M., Liu, X., Jiang, Y., Yu, Y.: MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 11, 3844–3853 (2018)CrossRef Yang, H., Wang, M., Liu, X., Jiang, Y., Yu, Y.: MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 11, 3844–3853 (2018)CrossRef
9.
go back to reference Zequine, C., Ranaweera, C.K., Wang, Z., Singh, S., Tripathi, P., Srivastava, O.N., Gupta, B.K., Ramasamy, K., Kahol, P.K., Dvornic, P.R.: High per formance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci. Rep. 6, 1–10 (2016)CrossRef Zequine, C., Ranaweera, C.K., Wang, Z., Singh, S., Tripathi, P., Srivastava, O.N., Gupta, B.K., Ramasamy, K., Kahol, P.K., Dvornic, P.R.: High per formance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci. Rep. 6, 1–10 (2016)CrossRef
10.
go back to reference Zequine, C., Ranaweera, C.K., Wang, Z., Dvornic, P.R., Kahol, P.K., Singh, S., Tripathi, P., Srivastava, O.N., Singh, S., Gupta, B.K.: High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci. Rep. 7, 1–12 (2017)CrossRef Zequine, C., Ranaweera, C.K., Wang, Z., Dvornic, P.R., Kahol, P.K., Singh, S., Tripathi, P., Srivastava, O.N., Singh, S., Gupta, B.K.: High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci. Rep. 7, 1–12 (2017)CrossRef
11.
go back to reference Madhushani, K.A.U., Gupta, R.K.: 3D graphene for high-performance supercapacitors BT. In: Gupta, R.K. (ed.) 3D Graphene: Fundamentals, Synthesis, and Emerging Applications, pp. 285–304. Springer Nature Switzerland, Cham (2023) Madhushani, K.A.U., Gupta, R.K.: 3D graphene for high-performance supercapacitors BT. In: Gupta, R.K. (ed.) 3D Graphene: Fundamentals, Synthesis, and Emerging Applications, pp. 285–304. Springer Nature Switzerland, Cham (2023)
12.
go back to reference Srivastava, R., Bhardwaj, S., Kumar, A., Singhal, R., Scanley, J., Broadbridge, C.C., Gupta, R.K.: Waste citrus reticulata assisted preparation of cobalt oxide nanoparticles for supercapacitors application. Available SSRN 4231878. (n.d.) Srivastava, R., Bhardwaj, S., Kumar, A., Singhal, R., Scanley, J., Broadbridge, C.C., Gupta, R.K.: Waste citrus reticulata assisted preparation of cobalt oxide nanoparticles for supercapacitors application. Available SSRN 4231878. (n.d.)
13.
go back to reference Mitchell, E., Candler, J., De Souza, F., Gupta, R.K., Gupta, B.K., Dong, L.F., De Souza, F., Gupta, R.K., Kumar, B.: High performance supercapacitor based on multilayer of polyaniline and graphene oxide. Synth. Met. 199, 214–218 (2015)CrossRef Mitchell, E., Candler, J., De Souza, F., Gupta, R.K., Gupta, B.K., Dong, L.F., De Souza, F., Gupta, R.K., Kumar, B.: High performance supercapacitor based on multilayer of polyaniline and graphene oxide. Synth. Met. 199, 214–218 (2015)CrossRef
14.
go back to reference Yu, K., Pan, X., Zhang, G., Liao, X., Zhou, X., Yan, M., Xu, L., Mai, L.: Nanowires in energy storage devices: structures, synthesis, and applications. Adv. Energy Mater. 8, 1–19 (2018)CrossRef Yu, K., Pan, X., Zhang, G., Liao, X., Zhou, X., Yan, M., Xu, L., Mai, L.: Nanowires in energy storage devices: structures, synthesis, and applications. Adv. Energy Mater. 8, 1–19 (2018)CrossRef
15.
go back to reference Shah, K.A., Tali, B.A.: Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016)CrossRef Shah, K.A., Tali, B.A.: Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016)CrossRef
16.
go back to reference Koziol, K., Boskovic, B.O., Yahya, N.: Synthesis of carbon nanostructures by CVD method BT. In: Yahya, N. (ed.) Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, pp. 23–49. Springer Berlin Heidelberg, Berlin, Heidelberg (2011) Koziol, K., Boskovic, B.O., Yahya, N.: Synthesis of carbon nanostructures by CVD method BT. In: Yahya, N. (ed.) Carbon and Oxide Nanostructures: Synthesis, Characterisation and Applications, pp. 23–49. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)
17.
go back to reference Magrez, A., Seo, J.W., Smajda, R., Mionić, M., Forró, L.: Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials (Basel). 3, 4871–4891 (2010)PubMedPubMedCentralCrossRef Magrez, A., Seo, J.W., Smajda, R., Mionić, M., Forró, L.: Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth. Materials (Basel). 3, 4871–4891 (2010)PubMedPubMedCentralCrossRef
18.
go back to reference Purohit, R., Purohit, K., Rana, S., Rana, R.S., Patel, V.: Carbon nanotubes and their growth methods. Procedia Mater. Sci. 6, 716–728 (2014)CrossRef Purohit, R., Purohit, K., Rana, S., Rana, R.S., Patel, V.: Carbon nanotubes and their growth methods. Procedia Mater. Sci. 6, 716–728 (2014)CrossRef
19.
go back to reference Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, W.Y., Li, W.Z., Qian, L.X.: Very long carbon nanotubes. Nature 394, 631–632 (1998)CrossRef Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, W.Y., Li, W.Z., Qian, L.X.: Very long carbon nanotubes. Nature 394, 631–632 (1998)CrossRef
20.
go back to reference Liao, Y., Hussain, A., Laiho, P., Zhang, Q., Tian, Y., Wei, N., Ding, E.-X., Khan, S.A., Nguyen, N.N., Ahmad, S., Kauppinen, E.I.: Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv. Mater. Interfaces 5, 1801209 (2018)CrossRef Liao, Y., Hussain, A., Laiho, P., Zhang, Q., Tian, Y., Wei, N., Ding, E.-X., Khan, S.A., Nguyen, N.N., Ahmad, S., Kauppinen, E.I.: Tuning geometry of SWCNTs by CO2 in floating catalyst CVD for high-performance transparent conductive films. Adv. Mater. Interfaces 5, 1801209 (2018)CrossRef
21.
go back to reference Okada, T., Saida, T., Naritsuka, S., Maruyama, T.: Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum. Mater. Today Commun. 19, 51–55 (2019)CrossRef Okada, T., Saida, T., Naritsuka, S., Maruyama, T.: Low-temperature synthesis of single-walled carbon nanotubes with Co catalysts via alcohol catalytic chemical vapor deposition under high vacuum. Mater. Today Commun. 19, 51–55 (2019)CrossRef
22.
go back to reference Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.: Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72, 573–580 (2001)CrossRef Scott, C.D., Arepalli, S., Nikolaev, P., Smalley, R.E.: Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72, 573–580 (2001)CrossRef
23.
go back to reference Yudasaka, M., Kokai, F., Takahashi, K., Yamada, R., Sensui, N., Ichihashi, T., Iijima, S.: Formation of single-wall carbon nanotubes: comparison of CO2 laser ablation and Nd:YAG laser ablation. J. Phys. Chem. B 103, 3576–3581 (1999)CrossRef Yudasaka, M., Kokai, F., Takahashi, K., Yamada, R., Sensui, N., Ichihashi, T., Iijima, S.: Formation of single-wall carbon nanotubes: comparison of CO2 laser ablation and Nd:YAG laser ablation. J. Phys. Chem. B 103, 3576–3581 (1999)CrossRef
24.
go back to reference Muangrat, W., Wongwiriyapan, W., Morimoto, S., Hashimoto, Y.: Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Sci. Rep. 9, 7871 (2019)PubMedPubMedCentralCrossRef Muangrat, W., Wongwiriyapan, W., Morimoto, S., Hashimoto, Y.: Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Sci. Rep. 9, 7871 (2019)PubMedPubMedCentralCrossRef
25.
go back to reference Hou, H., Reneker, D.H.: Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv. Mater. 16, 69–73 (2004)CrossRef Hou, H., Reneker, D.H.: Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv. Mater. 16, 69–73 (2004)CrossRef
26.
go back to reference Peter, K.T., Vargo, J.D., Rupasinghe, T.P., De Jesus, A., Tivanski, A.V., Sander, E.A., Myung, N.V., Cwiertny, D.M.: Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber-carbon nanotube composite sorbents for point-of-use water treatment. ACS Appl. Mater. Interfaces 8, 11431–11440 (2016)PubMedCrossRef Peter, K.T., Vargo, J.D., Rupasinghe, T.P., De Jesus, A., Tivanski, A.V., Sander, E.A., Myung, N.V., Cwiertny, D.M.: Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber-carbon nanotube composite sorbents for point-of-use water treatment. ACS Appl. Mater. Interfaces 8, 11431–11440 (2016)PubMedCrossRef
27.
go back to reference Qu, J., Li, G.R., Gao, X.P.: One-dimensional hierarchical titania for fast reaction kinetics of photoanode materials of dye-sensitized solar cells. Energy Environ. Sci. 3, 2003–2009 (2010)CrossRef Qu, J., Li, G.R., Gao, X.P.: One-dimensional hierarchical titania for fast reaction kinetics of photoanode materials of dye-sensitized solar cells. Energy Environ. Sci. 3, 2003–2009 (2010)CrossRef
28.
go back to reference Chen, H.M., Chen, C.K., Liu, R.-S., Zhang, L., Zhang, J., Wilkinson, D.P.: Nano-architecture and material designs for water splitting photoelectrodes. Chem. Soc. Rev. 41, 5654–5671 (2012)PubMedCrossRef Chen, H.M., Chen, C.K., Liu, R.-S., Zhang, L., Zhang, J., Wilkinson, D.P.: Nano-architecture and material designs for water splitting photoelectrodes. Chem. Soc. Rev. 41, 5654–5671 (2012)PubMedCrossRef
29.
go back to reference Yu, Z., Tetard, L., Zhai, L., Thomas, J.: Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015)CrossRef Yu, Z., Tetard, L., Zhai, L., Thomas, J.: Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015)CrossRef
30.
go back to reference Li, L., Hu, Z.A., An, N., Yang, Y.Y., Li, Z.M., Wu, H.Y.: Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118, 22865–22872 (2014)CrossRef Li, L., Hu, Z.A., An, N., Yang, Y.Y., Li, Z.M., Wu, H.Y.: Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J. Phys. Chem. C 118, 22865–22872 (2014)CrossRef
31.
go back to reference Zang, X., Jiang, Y., Sanghadasa, M., Lin, L.: Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors. Sensors Actuators A Phys. 304, 111886 (2020)CrossRef Zang, X., Jiang, Y., Sanghadasa, M., Lin, L.: Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors. Sensors Actuators A Phys. 304, 111886 (2020)CrossRef
32.
go back to reference Zhu, Y.-E., Yang, L., Sheng, J., Chen, Y., Gu, H., Wei, J., Zhou, Z.: Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-Ion capacitors. Adv. Energy Mater. 7, 1701222 (2017)CrossRef Zhu, Y.-E., Yang, L., Sheng, J., Chen, Y., Gu, H., Wei, J., Zhou, Z.: Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-Ion capacitors. Adv. Energy Mater. 7, 1701222 (2017)CrossRef
33.
go back to reference Li, M., Zu, M., Yu, J., Cheng, H., Li, Q.: Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13, 1602994 (2017)CrossRef Li, M., Zu, M., Yu, J., Cheng, H., Li, Q.: Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small 13, 1602994 (2017)CrossRef
34.
go back to reference Cao, F.-F., Guo, Y.-G., Zheng, S.-F., Wu, X.-L., Jiang, L.-Y., Bi, R.-R., Wan, L.-J., Maier, J.: Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 22, 1908–1914 (2010)CrossRef Cao, F.-F., Guo, Y.-G., Zheng, S.-F., Wu, X.-L., Jiang, L.-Y., Bi, R.-R., Wan, L.-J., Maier, J.: Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 22, 1908–1914 (2010)CrossRef
35.
go back to reference Yu, W.-J., Liu, C., Hou, P.-X., Zhang, L., Shan, X.-Y., Li, F., Cheng, H.-M.: Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 9, 5063–5071 (2015)PubMedCrossRef Yu, W.-J., Liu, C., Hou, P.-X., Zhang, L., Shan, X.-Y., Li, F., Cheng, H.-M.: Lithiation of silicon nanoparticles confined in carbon nanotubes. ACS Nano 9, 5063–5071 (2015)PubMedCrossRef
36.
go back to reference Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)PubMedCrossRef Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)PubMedCrossRef
37.
go back to reference Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., Cho, J.-H., Epstein, E., Dayeh, S.A., Picraux, S.T., Zhu, T., Li, J., Sullivan, J.P., Cumings, J., Wang, C., Mao, S.X., Ye, Z.Z., Zhang, S., Huang, J.Y.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011)PubMedCrossRef Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., Cho, J.-H., Epstein, E., Dayeh, S.A., Picraux, S.T., Zhu, T., Li, J., Sullivan, J.P., Cumings, J., Wang, C., Mao, S.X., Ye, Z.Z., Zhang, S., Huang, J.Y.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011)PubMedCrossRef
38.
go back to reference Liu, X.H., Zhang, L.Q., Zhong, L., Liu, Y., Zheng, H., Wang, J.W., Cho, J.-H., Dayeh, S.A., Picraux, S.T., Sullivan, J.P., Mao, S.X., Ye, Z.Z., Huang, J.Y.: Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251–2258 (2011)PubMedCrossRef Liu, X.H., Zhang, L.Q., Zhong, L., Liu, Y., Zheng, H., Wang, J.W., Cho, J.-H., Dayeh, S.A., Picraux, S.T., Sullivan, J.P., Mao, S.X., Ye, Z.Z., Huang, J.Y.: Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251–2258 (2011)PubMedCrossRef
39.
go back to reference McDowell, M.T., Woo Lee, S., Wang, C., Cui, Y.: The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 1, 401–410 (2012) McDowell, M.T., Woo Lee, S., Wang, C., Cui, Y.: The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 1, 401–410 (2012)
40.
go back to reference Wang, J.W., He, Y., Fan, F., Liu, X.H., Xia, S., Liu, Y., Harris, C.T., Li, H., Huang, J.Y., Mao, S.X., Zhu, T.: Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13, 709–715 (2013)PubMedCrossRef Wang, J.W., He, Y., Fan, F., Liu, X.H., Xia, S., Liu, Y., Harris, C.T., Li, H., Huang, J.Y., Mao, S.X., Zhu, T.: Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13, 709–715 (2013)PubMedCrossRef
41.
go back to reference Wang, J.W., Liu, X.H., Zhao, K., Palmer, A., Patten, E., Burton, D., Mao, S.X., Suo, Z., Huang, J.Y.: Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers. ACS Nano 6, 9158–9167 (2012)PubMedCrossRef Wang, J.W., Liu, X.H., Zhao, K., Palmer, A., Patten, E., Burton, D., Mao, S.X., Suo, Z., Huang, J.Y.: Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers. ACS Nano 6, 9158–9167 (2012)PubMedCrossRef
42.
go back to reference Gao, P., Sun, M., Wu, X., Zhou, S., Deng, X., Xie, Z., Xiao, L., Jiang, L., Huang, Q.: (B, N)-Doped 3D porous graphene–CNTs synthesized by chemical vapor deposition as a bi-functional catalyst for ORR and HER. RSC Adv. 8, 26934–26937 (2018)PubMedPubMedCentralCrossRef Gao, P., Sun, M., Wu, X., Zhou, S., Deng, X., Xie, Z., Xiao, L., Jiang, L., Huang, Q.: (B, N)-Doped 3D porous graphene–CNTs synthesized by chemical vapor deposition as a bi-functional catalyst for ORR and HER. RSC Adv. 8, 26934–26937 (2018)PubMedPubMedCentralCrossRef
43.
go back to reference Kruusenberg, I., Ratso, S., Vikkisk, M., Kanninen, P., Kallio, T., Kannan, A.M., Tammeveski, K.: Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. J. Power. Sources 281, 94–102 (2015)CrossRef Kruusenberg, I., Ratso, S., Vikkisk, M., Kanninen, P., Kallio, T., Kannan, A.M., Tammeveski, K.: Highly active nitrogen-doped nanocarbon electrocatalysts for alkaline direct methanol fuel cell. J. Power. Sources 281, 94–102 (2015)CrossRef
44.
go back to reference Zhang, H., Zhou, Y., Li, C., Chen, S., Liu, L., Liu, S., Yao, H., Hou, H.: Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon N. Y. 95, 388–395 (2015)CrossRef Zhang, H., Zhou, Y., Li, C., Chen, S., Liu, L., Liu, S., Yao, H., Hou, H.: Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon N. Y. 95, 388–395 (2015)CrossRef
45.
go back to reference Yu, H., Shang, L., Bian, T., Shi, R., Waterhouse, G.I.N., Zhao, Y., Zhou, C., Wu, L.-Z., Tung, C.-H., Zhang, T.: Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28, 5080–5086 (2016)PubMedCrossRef Yu, H., Shang, L., Bian, T., Shi, R., Waterhouse, G.I.N., Zhao, Y., Zhou, C., Wu, L.-Z., Tung, C.-H., Zhang, T.: Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 28, 5080–5086 (2016)PubMedCrossRef
46.
go back to reference Niu, W.-J., Zhu, R.-H., Yan-Hua Zeng, H.-B., Cosnier, S., Zhang, X.-J., Shan, D.: One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction. Carbon N. Y. 109, 402–410 (2016) Niu, W.-J., Zhu, R.-H., Yan-Hua Zeng, H.-B., Cosnier, S., Zhang, X.-J., Shan, D.: One-pot synthesis of nitrogen-rich carbon dots decorated graphene oxide as metal-free electrocatalyst for oxygen reduction reaction. Carbon N. Y. 109, 402–410 (2016)
47.
go back to reference Sun, M., Wu, X., Xie, Z., Deng, X., Wen, J., Huang, Q., Huang, B.: Tailoring platelet carbon nanofibers for high-purity Pyridinic-N doping: a novel method for synthesizing oxygen reduction reaction catalysts. Carbon N. Y. 125, 401–408 (2017)CrossRef Sun, M., Wu, X., Xie, Z., Deng, X., Wen, J., Huang, Q., Huang, B.: Tailoring platelet carbon nanofibers for high-purity Pyridinic-N doping: a novel method for synthesizing oxygen reduction reaction catalysts. Carbon N. Y. 125, 401–408 (2017)CrossRef
48.
go back to reference Encalada, J., Savaram, K., Travlou, N.A., Li, W., Li, Q., Delgado-Sánchez, C., Fierro, V., Celzard, A., He, H., Bandosz, T.J.: Combined effect of porosity and surface chemistry on the electrochemical reduction of oxygen on cellular vitreous carbon foam catalyst. ACS Catal. 7, 7466–7478 (2017)CrossRef Encalada, J., Savaram, K., Travlou, N.A., Li, W., Li, Q., Delgado-Sánchez, C., Fierro, V., Celzard, A., He, H., Bandosz, T.J.: Combined effect of porosity and surface chemistry on the electrochemical reduction of oxygen on cellular vitreous carbon foam catalyst. ACS Catal. 7, 7466–7478 (2017)CrossRef
49.
go back to reference Li, J., Qian, J., Chen, X., Zeng, X., Li, L., Ouyang, B., Kan, E., Zhang, W.: Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells. Compos. Part B Eng. 231, 109573 (2022)CrossRef Li, J., Qian, J., Chen, X., Zeng, X., Li, L., Ouyang, B., Kan, E., Zhang, W.: Three-dimensional hierarchical graphitic carbon encapsulated CoNi alloy/N-doped CNTs/carbon nanofibers as an efficient multifunctional electrocatalyst for high-performance microbial fuel cells. Compos. Part B Eng. 231, 109573 (2022)CrossRef
50.
go back to reference Remy, E., Thomas, Y.R.J., Guetaz, L., Fouda-Onana, F., Jacques, P.-A., Heitzmann, M.: Optimization and tunability of 2D graphene and 1D carbon nanotube electrocatalysts structure for PEM fuel cells. Catalysts 8 (2018) Remy, E., Thomas, Y.R.J., Guetaz, L., Fouda-Onana, F., Jacques, P.-A., Heitzmann, M.: Optimization and tunability of 2D graphene and 1D carbon nanotube electrocatalysts structure for PEM fuel cells. Catalysts 8 (2018)
Metadata
Title
One-Dimensional Nanocarbon for Electrochemical Energy Applications
Authors
Pratik Patel
Rutu Patel
Felipe M. de Souza
Ram K. Gupta
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9931-6_1