Skip to main content
Top

2020 | OriginalPaper | Chapter

7. One-Dimensional Nanotubes

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Boron and carbon nanotubes and related armchair and zigzag structures are presented and their mechanical, optical and electronic properties and stabilities are discussed. The theoretical and experimental results of both elements in the form of single-, double-, and multi-walled nanotubes are illustrated. The precursors of buckled, \(\alpha \)- and \(\gamma \)-sheets rolling up into nanotubes are indicated. The potential applications of these structures are proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The energy difference between the vacuum level and the bottom of the conduction band.
 
Literature
1.
go back to reference A. Quandt, I. Boustani, Boron Nanotubes. Chem. Phys. Chem. 6, 2001–2008 (2005) A. Quandt, I. Boustani, Boron Nanotubes. Chem. Phys. Chem. 6, 2001–2008 (2005)
2.
go back to reference M.S. Dresselhaus, G. Dresselhaus, P.C. Ekland, Science of Fullerenes and Carbon Nanotubes. (Academic press, San Diego, CA, 1996). ISBN 012-221820-5 M.S. Dresselhaus, G. Dresselhaus, P.C. Ekland, Science of Fullerenes and Carbon Nanotubes. (Academic press, San Diego, CA, 1996). ISBN 012-221820-5
3.
go back to reference G.A. Patzke, F. Krumeich, R. Nesper, Oxidic nanotubes and nanorods–anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. 41, 5000–5015 (2002) G.A. Patzke, F. Krumeich, R. Nesper, Oxidic nanotubes and nanorods–anisotropic modules for a future nanotechnology. Angew. Chem. Int. Ed. 41, 5000–5015 (2002)
4.
go back to reference M. Cote, M.L. Cohen, D.J. Chadi, Theoretical study of the structural and electronic properties of GaSe nanotubes. Phys. Rev. B 58, R4277–R4280 (1998) M. Cote, M.L. Cohen, D.J. Chadi, Theoretical study of the structural and electronic properties of GaSe nanotubes. Phys. Rev. B 58, R4277–R4280 (1998)
5.
go back to reference B. Albert, H. Hillebrecht, Boron—Elementary Challenge for Experimenters and Theoreticians. Angew. Chem. Int. Ed., 2009, 48, 2–31. I.; Quandt, A.; and Kramer, P,: Tubular structure in \(\alpha \)-rhombohedral quasicrystals: Ab Initio study of two fused boron icosahedra. Europhys. Lett., 1996, 36, 583-588 B. Albert, H. Hillebrecht, Boron—Elementary Challenge for Experimenters and Theoreticians. Angew. Chem. Int. Ed., 2009, 48, 2–31. I.; Quandt, A.; and Kramer, P,: Tubular structure in \(\alpha \)-rhombohedral quasicrystals: Ab Initio study of two fused boron icosahedra. Europhys. Lett., 1996, 36, 583-588
6.
go back to reference I. Boustani, A. Quandt, P. Kramer, Tubular structure in \(\alpha \)-rhombohedral quasicrystals: Ab Initio study of two fused boron icosahedra. Europhys. Lett. 36, 583–588 (1996) I. Boustani, A. Quandt, P. Kramer, Tubular structure in \(\alpha \)-rhombohedral quasicrystals: Ab Initio study of two fused boron icosahedra. Europhys. Lett. 36, 583–588 (1996)
7.
go back to reference I. Boustani, A. Quandt, Nanotubules of bare boron clusters: Ab Initio and density functional study. Europhys. Lett. 39, 527–532 (1997)CrossRef I. Boustani, A. Quandt, Nanotubules of bare boron clusters: Ab Initio and density functional study. Europhys. Lett. 39, 527–532 (1997)CrossRef
8.
go back to reference I. Boustani, A. Quandt, A. Rubio, Boron quasicrystals and boron nanotubes: Ab Initio study of Study of Various B\(_{96}\) isomers. J. Solid State Chem. 154, 269–274 (2000) I. Boustani, A. Quandt, A. Rubio, Boron quasicrystals and boron nanotubes: Ab Initio study of Study of Various B\(_{96}\) isomers. J. Solid State Chem. 154, 269–274 (2000)
9.
go back to reference R.K.F. Lee, B.J. Cox, J.M. Hill, An exact polyhedral model for boron nanotubes. J. Phys. A: Math. Theor. 42, 065204 (23pp) (2009) R.K.F. Lee, B.J. Cox, J.M. Hill, An exact polyhedral model for boron nanotubes. J. Phys. A: Math. Theor. 42, 065204 (23pp) (2009)
10.
go back to reference R.K.F. Lee, B.J. Cox, J.M. Hill, Ideal polyhedral models for single-walled nanotubes. Phys. Proc. 22, 144–149 (2011)CrossRef R.K.F. Lee, B.J. Cox, J.M. Hill, Ideal polyhedral models for single-walled nanotubes. Phys. Proc. 22, 144–149 (2011)CrossRef
11.
go back to reference I. Boustani, A. Quandt, E. Hernandez, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3185 (1999)CrossRef I. Boustani, A. Quandt, E. Hernandez, A. Rubio, New boron based nanostructured materials. J. Chem. Phys. 110, 3176–3185 (1999)CrossRef
12.
go back to reference J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413-1–035413-14 (2006) J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413-1–035413-14 (2006)
13.
go back to reference J. Kunstmann, A. Quandt, I. Boustani, An approach to control the radius and the chirality of nanotubes. Nanotehnology 18, 155703 (3pp) (2007) J. Kunstmann, A. Quandt, I. Boustani, An approach to control the radius and the chirality of nanotubes. Nanotehnology 18, 155703 (3pp) (2007)
14.
go back to reference K.C. Lau, R. Pati, R. Pandey, A.C. Pineda, First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem. Phys. Lett. 418, 549–554 (2006)CrossRef K.C. Lau, R. Pati, R. Pandey, A.C. Pineda, First-principles study of the stability and electronic properties of sheets and nanotubes of elemental boron. Chem. Phys. Lett. 418, 549–554 (2006)CrossRef
15.
go back to reference X.-B. Yang, Y. Ding, J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 77, 041402-(1-4) (2008) X.-B. Yang, Y. Ding, J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Phys. Rev. B 77, 041402-(1-4) (2008)
16.
go back to reference N.G. Szwacki, C.J. Tymczak, The symmetry of the boron buckyball and a related boron nanotube. Chem. Phys. Lett. 494, 80–83 (2010) N.G. Szwacki, C.J. Tymczak, The symmetry of the boron buckyball and a related boron nanotube. Chem. Phys. Lett. 494, 80–83 (2010)
17.
go back to reference F.-Y. Tian, Y.-X. Wang, V.C. Lo, J. Sheng, An ab initio investigation of boron nanotube in ringlike cluster form. App. Phys. Lett. 96, 131901-(1-3) (2010) F.-Y. Tian, Y.-X. Wang, V.C. Lo, J. Sheng, An ab initio investigation of boron nanotube in ringlike cluster form. App. Phys. Lett. 96, 131901-(1-3) (2010)
18.
go back to reference D. Ciuparu, R.F. Klie, Y.-M. Zhu, L. Pfefferle, Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004)CrossRef D. Ciuparu, R.F. Klie, Y.-M. Zhu, L. Pfefferle, Synthesis of pure boron single-wall nanotubes. J. Phys. Chem. B 108, 3967–3969 (2004)CrossRef
20.
go back to reference F. Liu, C.-M. Shen, Z.-J. Su, X.-L. Ding, S.-Z. Deng, J. Chen, N.-S. Xu, H.-J. Gao, Metal-like single crystalline boron nanotubes: Synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010)CrossRef F. Liu, C.-M. Shen, Z.-J. Su, X.-L. Ding, S.-Z. Deng, J. Chen, N.-S. Xu, H.-J. Gao, Metal-like single crystalline boron nanotubes: Synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010)CrossRef
21.
go back to reference A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)CrossRef A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)CrossRef
22.
go back to reference N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269, 966–967 (1995)CrossRef N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269, 966–967 (1995)CrossRef
24.
26.
go back to reference H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C\(_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C\(_{60}\): Buckminsterfullerene. Nature 318, 162–163 (1985)CrossRef
27.
go back to reference P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Clarendon Press, Oxford, 1995) P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Clarendon Press, Oxford, 1995)
28.
go back to reference S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
30.
go back to reference J.-Y. Hsieh, J.-M. Lu, M.-Y. Huang, C.-C. Hwang, Softening phenomena of single-walled carbon nanotubes at higher temperature. Nanotechnology 17, 3920–3924 (2006)CrossRef J.-Y. Hsieh, J.-M. Lu, M.-Y. Huang, C.-C. Hwang, Softening phenomena of single-walled carbon nanotubes at higher temperature. Nanotechnology 17, 3920–3924 (2006)CrossRef
31.
go back to reference M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33, 883–981 (1995)CrossRef M.S. Dresselhaus, G. Dresselhaus, R. Saito, Physics of carbon nanotubes. Carbon 33, 883–981 (1995)CrossRef
32.
go back to reference D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495–533 (2002)CrossRef D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu, R.S. Ruoff, Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495–533 (2002)CrossRef
33.
go back to reference I. Levchenko, K. Ostrikov, J.D. Long, S. Xu, Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl. Phys. Lett. 91, 113115-1–113115-3 (2007) I. Levchenko, K. Ostrikov, J.D. Long, S. Xu, Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl. Phys. Lett. 91, 113115-1–113115-3 (2007)
34.
go back to reference I. Levchenko, M. Keidar, S.-Y. Xu, H. Kersten, K.K. Ostrikov, Low-temperature plasmas in carbon nanostructure synthesis. J. Vac. Sci. Technol. B 31, 050801-1–050801-16 (2013) I. Levchenko, M. Keidar, S.-Y. Xu, H. Kersten, K.K. Ostrikov, Low-temperature plasmas in carbon nanostructure synthesis. J. Vac. Sci. Technol. B 31, 050801-1–050801-16 (2013)
35.
go back to reference S. Kumar, I. Levchenko, K.K. Ostrikov, J.A. McLaughin, Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape. Carbon 50, 325–329 (2012)CrossRef S. Kumar, I. Levchenko, K.K. Ostrikov, J.A. McLaughin, Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape. Carbon 50, 325–329 (2012)CrossRef
37.
go back to reference R. Raczyński, A. Dawid, A. Piȩtek, Z. Gburski, Reorienatational dynamics of cholesterol molecules in thin film surrounded carbon nanotube: Molecular dynamics simulations. J. Mol. Struct. 792–793, 216–220 (2006)CrossRef R. Raczyński, A. Dawid, A. Piȩtek, Z. Gburski, Reorienatational dynamics of cholesterol molecules in thin film surrounded carbon nanotube: Molecular dynamics simulations. J. Mol. Struct. 792–793, 216–220 (2006)CrossRef
39.
go back to reference Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R. Dai, Z.W. Pan, Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mat. Sci. Eng. C 16, 3–10 (2001)CrossRef Z.L. Wang, R.P. Gao, P. Poncharal, W.A. de Heer, Z.R. Dai, Z.W. Pan, Mechanical and electrostatic properties of carbon nanotubes and nanowires. Mat. Sci. Eng. C 16, 3–10 (2001)CrossRef
41.
go back to reference R. Cherian, P. Mahadevan, Elastic properties of carbon nanotubes: An atomistic approach. J. Nanosci. Nanotechnol. 7, 1779–1782 (2007)CrossRef R. Cherian, P. Mahadevan, Elastic properties of carbon nanotubes: An atomistic approach. J. Nanosci. Nanotechnol. 7, 1779–1782 (2007)CrossRef
42.
go back to reference S.S. Gupta, F.G. Bosco, R.C. Batra, Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Comput. Mater. Sci. 47, 1049–1059 (2010)CrossRef S.S. Gupta, F.G. Bosco, R.C. Batra, Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Comput. Mater. Sci. 47, 1049–1059 (2010)CrossRef
43.
go back to reference R.C. Batra, S.S. Gupta, Wall thickness and radial breathing modes of single-walled carbon nanotubes. J. Appl. Mech. 75, 061010-1–061010-6 (2008) R.C. Batra, S.S. Gupta, Wall thickness and radial breathing modes of single-walled carbon nanotubes. J. Appl. Mech. 75, 061010-1–061010-6 (2008)
44.
go back to reference A.F. Ávila, G.S.R. Lacerda, Molecular mechanics applied to single-walled carbon nanotubes. Mater. Res. 11, 325–333 (2008)CrossRef A.F. Ávila, G.S.R. Lacerda, Molecular mechanics applied to single-walled carbon nanotubes. Mater. Res. 11, 325–333 (2008)CrossRef
45.
go back to reference T. Fujimori, L.R. Radovic, A.B. Silva-Tapia, M. Endo, K. Kaneko, Structural importance of Stone-Thrower-Wales defects in rolled and flat graphenes from surface-enhanced Raman scattering. Carbon 50, 3274–3279 (2012)CrossRef T. Fujimori, L.R. Radovic, A.B. Silva-Tapia, M. Endo, K. Kaneko, Structural importance of Stone-Thrower-Wales defects in rolled and flat graphenes from surface-enhanced Raman scattering. Carbon 50, 3274–3279 (2012)CrossRef
46.
go back to reference R.M. Moghadam, S.A. Hosseini, M. Salehi, The influence of Stone-Thrower-Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element. Physica E 62, 80–89 (2014)CrossRef R.M. Moghadam, S.A. Hosseini, M. Salehi, The influence of Stone-Thrower-Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element. Physica E 62, 80–89 (2014)CrossRef
47.
go back to reference Z.-H. Dai, L.-Q. Liu, X.-Y. Qi, J. Kuang, Y.-U. Wei, H.-W. Zhu, Z. Zhang, Three-dimensional sponges with super mechanical stability: Harnessing true elasticity of individual carbon nanotubes in macroscopic architectures. Sci. Rep. 6(18930), 1–9 (2016) Z.-H. Dai, L.-Q. Liu, X.-Y. Qi, J. Kuang, Y.-U. Wei, H.-W. Zhu, Z. Zhang, Three-dimensional sponges with super mechanical stability: Harnessing true elasticity of individual carbon nanotubes in macroscopic architectures. Sci. Rep. 6(18930), 1–9 (2016)
48.
go back to reference C.M. Wang, Y.Y. Zhang, Y. Xiang, J.N. Reddy, Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev. 63, 030804-1–030804-81 (2010) C.M. Wang, Y.Y. Zhang, Y. Xiang, J.N. Reddy, Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev. 63, 030804-1–030804-81 (2010)
Metadata
Title
One-Dimensional Nanotubes
Author
Ihsan Boustani
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-32726-2_7

Premium Partners