Skip to main content
Top
Published in:

10-10-2022

One-Stage Multi-view Clustering with Hierarchical Attributes Extraction

Authors: Yong Mi, Jian Dai, Zhenwen Ren, Xiaojian You, Yanlong Wang

Published in: Cognitive Computation | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multi-view clustering (MVC) has received significant attention, and obtained praiseworthy performance improvement in comparison with signal-view clustering, since it can effectively take advantage of the underlying correlation and structure information of multi-view data. However, existing methods only utilize signal-layer mapping to exploit clustering information, and ignore the underlying hierarchical attribute information in complex and interleaved multi-view data. In this work, we propose a novel MVC method, one-stage multi-view clustering with hierarchical attributes extracting (OS-HAE), to exploit the underlying hierarchical attributes for MVC. Specifically, we learn multiple latent representations from each view by a novel deep matrix factorization (DMF) framework with a layer-wise scheme, so that the learned representations can contain the hierarchical attribute information of original multi-view data. In addition, the samples from the same clusters but from different views are forced to be closer, and samples from different cluster are away from each other in the latent low-dimensional space. Furthermore, we introduce local manifold learning to guide DMF, such that the deepest representations can preserve structure information of original data. Meanwhile, a novel auto-weighted spectral rotating fusion (ASRF) paradigm is proposed to obtain the final clustering indicator matrix directly, so that OS-HAE can avoid obtaining suboptimal results caused by a two-stage strategy. Then, an alternate algorithm is designed to solve the objective function. Experimental results on six datasets demonstrate the advancement and effectiveness of the proposed OS-HAE. Consequently, the proposed method can effectively exploit the hierarchical information of multi-view to improve clustering performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dai J, Ren Z, Luo Y, Song H, Yang J. Multi-view clustering with latent low-rank proxy graph learning. Cogn Comput. 2021;13(4):1049–60.CrossRef Dai J, Ren Z, Luo Y, Song H, Yang J. Multi-view clustering with latent low-rank proxy graph learning. Cogn Comput. 2021;13(4):1049–60.CrossRef
2.
go back to reference Liu J, Liu X, Wang S, Zhou S, Yang Y. Hierarchical multiple kernel clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 8671–9. (vol 35). Liu J, Liu X, Wang S, Zhou S, Yang Y. Hierarchical multiple kernel clustering. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 8671–9. (vol 35).
3.
go back to reference Zhang C, Cui Y, Han Z, Zhou JT, Fu H, Hu Q. Deep partial multi-view learning. IEEE Trans Pattern Anal Mach Intell. 2022;44(5):2402–15. Zhang C, Cui Y, Han Z, Zhou JT, Fu H, Hu Q. Deep partial multi-view learning. IEEE Trans Pattern Anal Mach Intell. 2022;44(5):2402–15.
4.
go back to reference Huang S, Kang Z, Xu Z, Liu Q. Robust deep k-means: an effective and simple method for data clustering. Pattern Recogn. 2021;117:107996. Huang S, Kang Z, Xu Z, Liu Q. Robust deep k-means: an effective and simple method for data clustering. Pattern Recogn. 2021;117:107996.
5.
go back to reference Lin Z, Kang Z. Graph filter-based multi-view attributed graph clustering. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI. 2021. p. 19–26. Lin Z, Kang Z. Graph filter-based multi-view attributed graph clustering. In: Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI. 2021. p. 19–26.
7.
go back to reference Tang C, Liu X, Wang P, Zhang C, Li M, Wang L. Adaptive hypergraph embedded semi-supervised multi-label image annotation. IEEE Trans Multimedia. 2019;21(11):2837–49.CrossRef Tang C, Liu X, Wang P, Zhang C, Li M, Wang L. Adaptive hypergraph embedded semi-supervised multi-label image annotation. IEEE Trans Multimedia. 2019;21(11):2837–49.CrossRef
8.
go back to reference Lv J, Kang Z, Lu X, Xu Z. Pseudo-supervised deep subspace clustering. IEEE Trans Image Process. 2021;30:5252–63.CrossRef Lv J, Kang Z, Lu X, Xu Z. Pseudo-supervised deep subspace clustering. IEEE Trans Image Process. 2021;30:5252–63.CrossRef
9.
go back to reference Li Y, Hu P, Liu Z, Peng D, Zhou JT, Peng X. Contrastive clustering. Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35:8547–55.CrossRef Li Y, Hu P, Liu Z, Peng D, Zhou JT, Peng X. Contrastive clustering. Proceedings of the AAAI Conference on Artificial Intelligence. 2021;35:8547–55.CrossRef
10.
go back to reference Nie F, Shi S, Li X. Auto-weighted multi-view co-clustering via fast matrix factorization. Pattern Recogn. 2020;102:107207. Nie F, Shi S, Li X. Auto-weighted multi-view co-clustering via fast matrix factorization. Pattern Recogn. 2020;102:107207.
11.
go back to reference Du S, Liu Z, Chen Z, Yang W, Wang S. Differentiable bi-sparse multi-view co-clustering. IEEE Trans Signal Process. 2021;69:4623–36.MathSciNetCrossRefMATH Du S, Liu Z, Chen Z, Yang W, Wang S. Differentiable bi-sparse multi-view co-clustering. IEEE Trans Signal Process. 2021;69:4623–36.MathSciNetCrossRefMATH
12.
go back to reference Ren Z, Sun Q. Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Netw Learn Syst. 2020;32(5):1839–51.MathSciNetCrossRef Ren Z, Sun Q. Simultaneous global and local graph structure preserving for multiple kernel clustering. IEEE Trans Neural Netw Learn Syst. 2020;32(5):1839–51.MathSciNetCrossRef
13.
go back to reference Ren Z, Yang SX, Sun Q, Wang T. Consensus affinity graph learning for multiple kernel clustering. IEEE Trans Cybern. 2020a;51(6):3273–3284. Ren Z, Yang SX, Sun Q, Wang T. Consensus affinity graph learning for multiple kernel clustering. IEEE Trans Cybern. 2020a;51(6):3273–3284.
14.
go back to reference Ren Z, Mukherjee M, Bennis M, Lloret J. Multikernel clustering via non-negative matrix factorization tailored graph tensor over distributed networks. IEEE J Sel Areas Commun. 2020b;39(7):1946–1956. Ren Z, Mukherjee M, Bennis M, Lloret J. Multikernel clustering via non-negative matrix factorization tailored graph tensor over distributed networks. IEEE J Sel Areas Commun. 2020b;39(7):1946–1956.
15.
go back to reference Zhang T, Liu X, Gong L, Wang S, Niu X, Shen L. Late fusion multiple kernel clustering with local kernel alignment maximization. IEEE Trans Multimedia. 2021. Zhang T, Liu X, Gong L, Wang S, Niu X, Shen L. Late fusion multiple kernel clustering with local kernel alignment maximization. IEEE Trans Multimedia. 2021.
16.
go back to reference Ren Z, Sun Q, Wei D. Multiple kernel clustering with kernel k-means coupled graph tensor learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 9411–8. (vol 35). Ren Z, Sun Q, Wei D. Multiple kernel clustering with kernel k-means coupled graph tensor learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 9411–8. (vol 35).
17.
go back to reference Huang S, Tsang I, Xu Z, Lv JC. Measuring diversity in graph learning: a unified framework for structured multi-view clustering. IEEE Trans Knowl Data Eng. 2021. Huang S, Tsang I, Xu Z, Lv JC. Measuring diversity in graph learning: a unified framework for structured multi-view clustering. IEEE Trans Knowl Data Eng. 2021.
18.
go back to reference Lin Z, Kang Z, Zhang L, Tian L. Multi-view attributed graph clustering. IEEE Trans Knowl Data Eng. 2021. Lin Z, Kang Z, Zhang L, Tian L. Multi-view attributed graph clustering. IEEE Trans Knowl Data Eng. 2021.
19.
go back to reference Wang H, Yang Y, Liu B. GMC: graph-based multi-view clustering. IEEE Trans Knowl Data Eng. 2019;32(6):1116–29.CrossRef Wang H, Yang Y, Liu B. GMC: graph-based multi-view clustering. IEEE Trans Knowl Data Eng. 2019;32(6):1116–29.CrossRef
20.
go back to reference Pan E, Kang Z. Multi-view contrastive graph clustering. Adv Neural Inf Process Syst. 2021;34:2148–59. Pan E, Kang Z. Multi-view contrastive graph clustering. Adv Neural Inf Process Syst. 2021;34:2148–59.
21.
go back to reference Kang Z, Peng C, Cheng Q, Liu X, Peng X, Xu Z, Tian L. Structured graph learning for clustering and semi-supervised classification. Pattern Recogn. 2021;110:107627. Kang Z, Peng C, Cheng Q, Liu X, Peng X, Xu Z, Tian L. Structured graph learning for clustering and semi-supervised classification. Pattern Recogn. 2021;110:107627.
22.
go back to reference Chen MS, Huang L, Wang CD, Huang D. Multi-view clustering in latent embedding space. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p. 3513–20. (vol 34). Chen MS, Huang L, Wang CD, Huang D. Multi-view clustering in latent embedding space. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p. 3513–20. (vol 34).
23.
24.
go back to reference Zhao H, Ding Z, Fu Y. Multi-view clustering via deep matrix factorization. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2017. p. 2921–7. (vol 31). Zhao H, Ding Z, Fu Y. Multi-view clustering via deep matrix factorization. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2017. p. 2921–7. (vol 31).
25.
go back to reference Liang N, Yang Z, Li Z, Sun W, Xie S. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints. Knowl-Based Syst. 2020;194:105582. Liang N, Yang Z, Li Z, Sun W, Xie S. Multi-view clustering by non-negative matrix factorization with co-orthogonal constraints. Knowl-Based Syst. 2020;194:105582.
26.
go back to reference Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM. 2013. p 252–60. Liu J, Wang C, Gao J, Han J. Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM. 2013. p 252–60.
27.
go back to reference Liu J, Liu X, Yang Y, Liu L, Wang S, Liang W, Shi J. One-pass multi-view clustering for large-scale data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. p 12344–53. Liu J, Liu X, Yang Y, Liu L, Wang S, Liang W, Shi J. One-pass multi-view clustering for large-scale data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. p 12344–53.
28.
go back to reference Li G, Geng J, Liu J, Han K. Multi-graph constraint matrix factorization for multi-view image clustering. In: 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE; 2020. p. 415–18. Li G, Geng J, Liu J, Han K. Multi-graph constraint matrix factorization for multi-view image clustering. In: 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE; 2020. p. 415–18.
29.
go back to reference Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999;401(6755):788–91.CrossRefMATH Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999;401(6755):788–91.CrossRefMATH
30.
go back to reference Cai X, Nie F, Huang H. Multi-view k-means clustering on big data. In: Proceedings of the Twenty-Third International Joint Conference On Artificial Intelligence. 2013. p. 2598–604. Cai X, Nie F, Huang H. Multi-view k-means clustering on big data. In: Proceedings of the Twenty-Third International Joint Conference On Artificial Intelligence. 2013. p. 2598–604.
31.
go back to reference Nie F, Shi S, Li J, Li X. Implicit weight learning for multi-view clustering. IEEE Trans Neural Netw Learn Syst. 2021. Nie F, Shi S, Li J, Li X. Implicit weight learning for multi-view clustering. IEEE Trans Neural Netw Learn Syst. 2021.
32.
go back to reference Huang S, Kang Z, Xu Z. Deep k-means: a simple and effective method for data clustering. In: International Conference on Neural Computing for Advanced Applications. Springer; 2020. p. 272–83. Huang S, Kang Z, Xu Z. Deep k-means: a simple and effective method for data clustering. In: International Conference on Neural Computing for Advanced Applications. Springer; 2020. p. 272–83.
33.
go back to reference Wu T, Zhang R, Jiao Z, Wei X, Li X. Adaptive spectral rotation via joint cluster and pairwise structure. IEEE Trans Knowl Data Eng. 2021. Wu T, Zhang R, Jiao Z, Wei X, Li X. Adaptive spectral rotation via joint cluster and pairwise structure. IEEE Trans Knowl Data Eng. 2021.
34.
go back to reference Zong L, Zhang X, Zhao L, Yu H, Zhao Q. Multi-view clustering via multi-manifold regularized non-negative matrix factorization. Neural Netw. 2017;88:74–89.CrossRefMATH Zong L, Zhang X, Zhao L, Yu H, Zhao Q. Multi-view clustering via multi-manifold regularized non-negative matrix factorization. Neural Netw. 2017;88:74–89.CrossRefMATH
35.
go back to reference Ren Z, Mukherjee M, Lloret J, Venu P. Multiple kernel driven clustering with locally consistent and selfish graph in industrial IoT. IEEE Trans Industr Inf. 2020;17(4):2956–63.CrossRef Ren Z, Mukherjee M, Lloret J, Venu P. Multiple kernel driven clustering with locally consistent and selfish graph in industrial IoT. IEEE Trans Industr Inf. 2020;17(4):2956–63.CrossRef
36.
go back to reference Ding CH, Li T, Jordan MI. Convex and semi-nonnegative matrix factorizations. IEEE Trans Pattern Anal Mach Intell. 2008;32(1):45–55.CrossRef Ding CH, Li T, Jordan MI. Convex and semi-nonnegative matrix factorizations. IEEE Trans Pattern Anal Mach Intell. 2008;32(1):45–55.CrossRef
37.
go back to reference Xu B, Zeng Z, Lian C, Ding Z. Semi-supervised low-rank semantics grouping for zero-shot learning. IEEE Trans Image Process. 2021;30:2207–19.CrossRef Xu B, Zeng Z, Lian C, Ding Z. Semi-supervised low-rank semantics grouping for zero-shot learning. IEEE Trans Image Process. 2021;30:2207–19.CrossRef
38.
go back to reference Liu X, Liu L, Liao Q, Wang S, Zhang Y, Tu W, Tang C, Liu J, Zhu E. One pass late fusion multi-view clustering. In: International Conference on Machine Learning, PMLR. 2021. p. 6850–59. Liu X, Liu L, Liao Q, Wang S, Zhang Y, Tu W, Tang C, Liu J, Zhu E. One pass late fusion multi-view clustering. In: International Conference on Machine Learning, PMLR. 2021. p. 6850–59.
39.
go back to reference Zhang C, Hu Q, Fu H, Zhu P, Cao X. Latent multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. p. 4279–87. Zhang C, Hu Q, Fu H, Zhu P, Cao X. Latent multi-view subspace clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. p. 4279–87.
40.
go back to reference Tang C, Liu X, Zhu X, Zhu E, Luo Z, Wang L, Gao W. CGD: multi-view clustering via cross-view graph diffusion. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p. 5924–31. (vol 34). Tang C, Liu X, Zhu X, Zhu E, Luo Z, Wang L, Gao W. CGD: multi-view clustering via cross-view graph diffusion. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p. 5924–31. (vol 34).
Metadata
Title
One-Stage Multi-view Clustering with Hierarchical Attributes Extraction
Authors
Yong Mi
Jian Dai
Zhenwen Ren
Xiaojian You
Yanlong Wang
Publication date
10-10-2022
Publisher
Springer US
Published in
Cognitive Computation / Issue 2/2023
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-022-10060-0

Other articles of this Issue 2/2023

Cognitive Computation 2/2023 Go to the issue

Premium Partner