Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

27-06-2020 | Original Article | Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020

Online planning for relative optimal and safe paths for USVs using a dual sampling domain reduction-based RRT* method

Journal:
International Journal of Machine Learning and Cybernetics > Issue 12/2020
Authors:
Naifeng Wen, Rubo Zhang, Junwei Wu, Guanqun Liu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

A heuristic Dual sampling domain Reduction-based Optimal Rapidly-exploring Random Tree scheme is proposed by guiding the planning procedure of the optimal rapidly-exploring random tree (RRT*) method through learning environmental knowledge. The scheme aims to plan low fuel expenditure, easy-execution, and low collision probability paths online for an unmanned surface vehicle (USV) under constraints. First, an elliptic sampling domain, which is subject to an elliptic equation and the shortest obstacle avoidance path estimation, is created to plan short paths. Second, by the consideration of the USV motion states, obstacles and external interferences of the current, the near sampling domains of tree nodes are reduced to exclude high-cost sampling domains. Path feasibility is ensured by explicitly handling motion constraints. Third, a safe distance-based collision detection (CD) scheme and a velocity-based bounding box of USV are proposed to decrease the path collision probability. Additionally, a layered USV online path planning framework is built in accordance with the model predictive control method, and the path smoothing scheme is applied via the Dubins curve under the curvature constraint. Results demonstrate that the proposed dual sampling domain reduction method outperforms traditional reduction schemes in terms of improving the execution efficiency of RRT*. Meanwhile, the proposed CD method is more reliable than the conventional one.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 12/2020

International Journal of Machine Learning and Cybernetics 12/2020 Go to the issue