Skip to main content
Top
Published in: Fluid Dynamics 2/2021

01-03-2021

Onset of Rayleigh–Taylor Convection in a Porous Medium

Author: E. B. Soboleva

Published in: Fluid Dynamics | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

The Rayleigh–Taylor instability and the initial stage of density-driven convection in a porous medium is simulated numerically in reference to geologic problems. A two-layer fluid system in which the lower layer is formed by pure water and the upper layer by an aqueous solution of salts is considered. The upper layer is more dense and viscous. The determination of the characteristic time of the onset of convection in the numerical solution is discussed. The parameters which depend on and do not depend of the initial density fluctuations are revealed. The effect of the viscosity contrast on the onset and development of convection flow and mass transfer is analyzed. The quantitative discrepancies related to neglecting the viscosity contrast in geologic fluids are estimated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Polubarinova-Kochina, P.Ya., Teoriya dvizheniya gruntovykh vod (Theory of Ground–Water Movement), Moscow: Nauka, 1977. Polubarinova-Kochina, P.Ya., Teoriya dvizheniya gruntovykh vod (Theory of Ground–Water Movement), Moscow: Nauka, 1977.
2.
go back to reference Bear, J. and Cheng, A., Modeling Groundwater Flow and Contaminant Transport, New York: Springer, 2010.CrossRef Bear, J. and Cheng, A., Modeling Groundwater Flow and Contaminant Transport, New York: Springer, 2010.CrossRef
4.
go back to reference Shargatov, V.A., Tsypkin, G.G., and Bogdanova, Yu.A., Fragmentation of flow through a porous medium with a capillary pressure gradient, Dokl. Ros. Akad. Nauk, 2018, vol. 480, no. 1, pp. 40–44. Shargatov, V.A., Tsypkin, G.G., and Bogdanova, Yu.A., Fragmentation of flow through a porous medium with a capillary pressure gradient, Dokl. Ros. Akad. Nauk, 2018, vol. 480, no. 1, pp. 40–44.
5.
go back to reference Afanasyev, A.A. and Chernova, A.A., On solution of the Riemann problem describing injection of a heated salt solution into an aquifer, Fluid Dynamics, 2019, vol. 54, no. 4, pp. 510–519. https://doi.org/10.1134/S0015462819040013CrossRef Afanasyev, A.A. and Chernova, A.A., On solution of the Riemann problem describing injection of a heated salt solution into an aquifer, Fluid Dynamics, 2019, vol. 54, no. 4, pp. 510–519. https://doi.org/10.1134/S0015462819040013CrossRef
7.
go back to reference Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer, 2006.MATH Nield, D.A. and Bejan, A., Convection in Porous Media, New York: Springer, 2006.MATH
8.
go back to reference Drazin, P.G., Introduction to Hydrodynamic Stability, Cambridge University Press, 2002.CrossRef Drazin, P.G., Introduction to Hydrodynamic Stability, Cambridge University Press, 2002.CrossRef
9.
go back to reference Bestehorn, M. and Firoozabadi, A., Effect of fluctuations on the onset of density-driven convection in porous media, Phys. Fluids, 2012, vol. 24, p. 114102.ADSCrossRef Bestehorn, M. and Firoozabadi, A., Effect of fluctuations on the onset of density-driven convection in porous media, Phys. Fluids, 2012, vol. 24, p. 114102.ADSCrossRef
10.
go back to reference Homsy, G.M., Viscous fingering in porous media, Ann. Rev. Fluid Mech., 1987, vol. 19, pp. 271–311.ADSCrossRef Homsy, G.M., Viscous fingering in porous media, Ann. Rev. Fluid Mech., 1987, vol. 19, pp. 271–311.ADSCrossRef
11.
go back to reference Manickam, O. and Homsy, G.M., Fingering instabilities in vertical miscible displacement flows in porous media, J. Fluid Mech., 1995, vol. 288, pp. 75–102.ADSMathSciNetCrossRef Manickam, O. and Homsy, G.M., Fingering instabilities in vertical miscible displacement flows in porous media, J. Fluid Mech., 1995, vol. 288, pp. 75–102.ADSMathSciNetCrossRef
12.
go back to reference Ghesmat, K. and Azaiez, J., Viscous fingering instability in porous media: Effect of anisotropic velocity-dependent dispersion tensor, Transport in Porous Media, 2008, vol. 73, pp. 297–318.MathSciNetCrossRef Ghesmat, K. and Azaiez, J., Viscous fingering instability in porous media: Effect of anisotropic velocity-dependent dispersion tensor, Transport in Porous Media, 2008, vol. 73, pp. 297–318.MathSciNetCrossRef
13.
go back to reference Moortgat, J., Viscous and gravitational fingering in multiphase compositional and compressible flow, Adv. Water Resources, 2016, vol. 89, pp. 53–66.ADSCrossRef Moortgat, J., Viscous and gravitational fingering in multiphase compositional and compressible flow, Adv. Water Resources, 2016, vol. 89, pp. 53–66.ADSCrossRef
14.
go back to reference Teng, Y., Wang, P., Jiang, L., Liu, Yu, Song, Y., and Wei, Y., An experimental study of density-driven convection of fluid pairs with viscosity contrast in porous media, Int. J. Heat and Mass Transfer, 2020, vol. 152, p. 119514.CrossRef Teng, Y., Wang, P., Jiang, L., Liu, Yu, Song, Y., and Wei, Y., An experimental study of density-driven convection of fluid pairs with viscosity contrast in porous media, Int. J. Heat and Mass Transfer, 2020, vol. 152, p. 119514.CrossRef
15.
go back to reference Aleksandrov, A.A., Dzhuraeva, E.V., and Utenkov, V.F., Viscosity of saline, Teplofiz. Vysok. Temp., 2012, vol. 50, no. 3, pp. 378–383. Aleksandrov, A.A., Dzhuraeva, E.V., and Utenkov, V.F., Viscosity of saline, Teplofiz. Vysok. Temp., 2012, vol. 50, no. 3, pp. 378–383.
16.
go back to reference Soboleva, E.B., Density-driven convection in an inhomogeneous geothermal reservoir, Int. J. Heat and Mass Transfer, 2018, vol. 127 (part C), pp. 784–798.CrossRef Soboleva, E.B., Density-driven convection in an inhomogeneous geothermal reservoir, Int. J. Heat and Mass Transfer, 2018, vol. 127 (part C), pp. 784–798.CrossRef
17.
go back to reference Soboleva, E.B., Method for numerically investigating the dynamics of saline water in soil, Mat. Modelirovanie, 2014, vol. 26, no. 2, pp. 50–64. Soboleva, E.B., Method for numerically investigating the dynamics of saline water in soil, Mat. Modelirovanie, 2014, vol. 26, no. 2, pp. 50–64.
20.
go back to reference Soboleva, E.B., A method for numerical simulation of haline convective flows in porous media applied to geology, Comp. Math. Mathem. Phys., 2019, vol. 59, no. 11, pp. 1893–1903.MathSciNetCrossRef Soboleva, E.B., A method for numerical simulation of haline convective flows in porous media applied to geology, Comp. Math. Mathem. Phys., 2019, vol. 59, no. 11, pp. 1893–1903.MathSciNetCrossRef
21.
go back to reference Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Pub. Corp.; McGraw-Hill, 1980. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Pub. Corp.; McGraw-Hill, 1980.
22.
go back to reference Leonard, B.P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering, 1979, vol. 19, no. 1, pp. 59–98.ADSCrossRef Leonard, B.P., A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering, 1979, vol. 19, no. 1, pp. 59–98.ADSCrossRef
23.
go back to reference Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6, Fluid Mechanics, (2nd ed.), Butterworth-Heinemann, 1987. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6, Fluid Mechanics, (2nd ed.), Butterworth-Heinemann, 1987.
24.
go back to reference Kim Kim, M.Ch., Onset of buoyancy-driven convection in a variable viscosity liquid saturated in a porous medium, Chemical Engineering Science, 2014, vol. 113, pp. 77–87.CrossRef Kim Kim, M.Ch., Onset of buoyancy-driven convection in a variable viscosity liquid saturated in a porous medium, Chemical Engineering Science, 2014, vol. 113, pp. 77–87.CrossRef
Metadata
Title
Onset of Rayleigh–Taylor Convection in a Porous Medium
Author
E. B. Soboleva
Publication date
01-03-2021
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 2/2021
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821020105

Other articles of this Issue 2/2021

Fluid Dynamics 2/2021 Go to the issue

Premium Partners