Skip to main content
Top

2021 | OriginalPaper | Chapter

Open Data Science to Fight COVID-19: Winning the 500k XPRIZE Pandemic Response Challenge

Authors : Miguel Angel Lozano, Òscar Garibo i Orts, Eloy Piñol, Miguel Rebollo, Kristina Polotskaya, Miguel Angel Garcia-March, J. Alberto Conejero, Francisco Escolano, Nuria Oliver

Published in: Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we describe the deep learning-based COVID-19 cases predictor and the Pareto-optimal Non-Pharmaceutical Intervention (NPI) prescriptor developed by the winning team of the 500k XPRIZE Pandemic Response Challenge, a four-month global competition organized by the XPRIZE Foundation. The competition aimed at developing data-driven AI models to predict COVID-19 infection rates and to prescribe NPI Plans that governments, business leaders and organizations could implement to minimize harm when reopening their economies. In addition to the validation performed by XPRIZE with real data, the winning models were validated in a real-world scenario thanks to an ongoing collaboration with the Valencian Government in Spain. We believe that this experience contributes to the necessary transition to more evidence-driven policy-making, particularly during a pandemic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Allen, L.: Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124(1), 83–105 (1994)CrossRef Allen, L.: Some discrete-time SI, SIR, and SIS epidemic models. Math. Biosci. 124(1), 83–105 (1994)CrossRef
3.
go back to reference Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of COVID-19 positive cases using deep learning models: a descriptive case study of India. Chaos Solit. Fractals 139, 110017 (2020) Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of COVID-19 positive cases using deep learning models: a descriptive case study of India. Chaos Solit. Fractals 139, 110017 (2020)
4.
go back to reference Ayyoubzadeh, S., Ayyoubzadeh, S., Zahedi, H., Ahmadi, M., Kalhori, S.: Predicting COVID-19 incidence through analysis of Google trends data in Iran: data mining and deep learning pilot study. JMIR Public Health Surveill. 6(2), e18828 (2020) Ayyoubzadeh, S., Ayyoubzadeh, S., Zahedi, H., Ahmadi, M., Kalhori, S.: Predicting COVID-19 incidence through analysis of Google trends data in Iran: data mining and deep learning pilot study. JMIR Public Health Surveill. 6(2), e18828 (2020)
5.
go back to reference Belakaria, S., Deshwal, A., Doppa, J.: Max-value entropy search for multi-objective bayesian optimization. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS, vol. 32 (2019) Belakaria, S., Deshwal, A., Doppa, J.: Max-value entropy search for multi-objective bayesian optimization. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) NeurIPS, vol. 32 (2019)
6.
go back to reference Brauner, J.M., et al.: Inferring the effectiveness of government interventions against COVID-19. Science 371(6531) (2021) Brauner, J.M., et al.: Inferring the effectiveness of government interventions against COVID-19. Science 371(6531) (2021)
7.
go back to reference Chatterjee, A., Gerdes, M., Martinez, S.: Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors 20(11), 3089 (2020)CrossRef Chatterjee, A., Gerdes, M., Martinez, S.: Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors 20(11), 3089 (2020)CrossRef
8.
go back to reference Chimmula, V.K.R., Zhang, L.: Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solit. Fractals 135, 109864 (2020)CrossRef Chimmula, V.K.R., Zhang, L.: Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solit. Fractals 135, 109864 (2020)CrossRef
9.
go back to reference Ferguson, N., et al.: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209–214 (2005)CrossRef Ferguson, N., et al.: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056), 209–214 (2005)CrossRef
10.
go back to reference Flaxman, S., et al.: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020)CrossRef Flaxman, S., et al.: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020)CrossRef
11.
go back to reference Hale, T., et al.: A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 1–10 (2021) Hale, T., et al.: A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nat. Hum. Behav. 1–10 (2021)
13.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
14.
go back to reference Khan, M., Hossain, A.: Machine learning approaches reveal that the number of tests do not matter to the prediction of global confirmed COVID-19 cases. Front. Artif. Intell. Appl. 3, 90 (2020) Khan, M., Hossain, A.: Machine learning approaches reveal that the number of tests do not matter to the prediction of global confirmed COVID-19 cases. Front. Artif. Intell. Appl. 3, 90 (2020)
15.
go back to reference Lauer, S., Grantz, K., Bi, Q., Jones, F., et al.: The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172(9), 577–582 (2020)CrossRef Lauer, S., Grantz, K., Bi, Q., Jones, F., et al.: The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 172(9), 577–582 (2020)CrossRef
16.
go back to reference Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm (extended abstract). In: Bessiere, C. (ed.) Proceedings of the 29th International Joint Conference on Artificial Intelligence (AI), IJCAI-20, pp. 4750–4754 (2020) Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic algorithm (extended abstract). In: Bessiere, C. (ed.) Proceedings of the 29th International Joint Conference on Artificial Intelligence (AI), IJCAI-20, pp. 4750–4754 (2020)
17.
go back to reference Miikkulainen, R., et al.: From prediction to prescription: evolutionary optimization of nonpharmaceutical interventions in the COVID-19 pandemic. IEEE Trans. Evol. Comput. 25(2), 386–401 (2021)CrossRef Miikkulainen, R., et al.: From prediction to prescription: evolutionary optimization of nonpharmaceutical interventions in the COVID-19 pandemic. IEEE Trans. Evol. Comput. 25(2), 386–401 (2021)CrossRef
18.
go back to reference Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)MathSciNetCrossRef Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)MathSciNetCrossRef
19.
go back to reference Pereira, I., et al.: Forecasting COVID-19 dynamics in Brazil: a data driven approach. Int. J. Environ. Res. Public Health 17(14), 5115 (2020)CrossRef Pereira, I., et al.: Forecasting COVID-19 dynamics in Brazil: a data driven approach. Int. J. Environ. Res. Public Health 17(14), 5115 (2020)CrossRef
20.
go back to reference Rahman, M., et al.: Data-driven dynamic clustering framework for mitigating the adverse economic impact of COVID-19 lockdown practices. Sustain. Cities Soc. 62, 102372 (2020)CrossRef Rahman, M., et al.: Data-driven dynamic clustering framework for mitigating the adverse economic impact of COVID-19 lockdown practices. Sustain. Cities Soc. 62, 102372 (2020)CrossRef
21.
go back to reference Riccardi, A., Gemignani, J., Fernández-Navarro, F., Heffernan, A.: Optimisation of non-pharmaceutical measures in COVID-19 growth via neural networks. IEEE Trans. Emerg. Topics Comput. 5(1), 79–91 (2021)CrossRef Riccardi, A., Gemignani, J., Fernández-Navarro, F., Heffernan, A.: Optimisation of non-pharmaceutical measures in COVID-19 growth via neural networks. IEEE Trans. Emerg. Topics Comput. 5(1), 79–91 (2021)CrossRef
22.
go back to reference Sameni, R.: Model-based prediction and optimal control of pandemics by nonpharmaceutical interventions. arXiv preprint arXiv:2102.06609 (2021) Sameni, R.: Model-based prediction and optimal control of pandemics by nonpharmaceutical interventions. arXiv preprint arXiv:​2102.​06609 (2021)
23.
go back to reference Tayarani, N., Mohammad, H.: Applications of artificial intelligence in battling against COVID-19: a literature review. Chaos Solit. Fractals 110338 (2020) Tayarani, N., Mohammad, H.: Applications of artificial intelligence in battling against COVID-19: a literature review. Chaos Solit. Fractals 110338 (2020)
24.
go back to reference Yousefpour, A., Jahanshahi, H., Bekiros, S.: Optimal policies for control of the novel coronavirus disease outbreak. Chaos Solit. Fractals 136, 1109883 (2020)MathSciNetCrossRef Yousefpour, A., Jahanshahi, H., Bekiros, S.: Optimal policies for control of the novel coronavirus disease outbreak. Chaos Solit. Fractals 136, 1109883 (2020)MathSciNetCrossRef
25.
go back to reference Zeroual, A., Harrou, F., Dairi, A., Sun, Y.: Deep learning methods for forecasting COVID-19 time-series data: a comparative study. Chaos Solit. Fractals 140, 110121 (2020)MathSciNetCrossRef Zeroual, A., Harrou, F., Dairi, A., Sun, Y.: Deep learning methods for forecasting COVID-19 time-series data: a comparative study. Chaos Solit. Fractals 140, 110121 (2020)MathSciNetCrossRef
Metadata
Title
Open Data Science to Fight COVID-19: Winning the 500k XPRIZE Pandemic Response Challenge
Authors
Miguel Angel Lozano
Òscar Garibo i Orts
Eloy Piñol
Miguel Rebollo
Kristina Polotskaya
Miguel Angel Garcia-March
J. Alberto Conejero
Francisco Escolano
Nuria Oliver
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-86514-6_24

Premium Partner