Skip to main content
Top

2020 | OriginalPaper | Chapter

69. Operational Strategies for a Large-Scale Horizontal-Axis Wind Turbine During Icing Conditions

Authors : D. B. Stoyanov, H. Sarlak, J. D. Nixon

Published in: Renewable Energy and Sustainable Buildings

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The global wind energy capacity installed in mountainous and subarctic regions is predicted to be 26% of the total 711.8 GW of cumulative power, which is expected to be installed by the end of 2020. Power losses due to ice deposition on wind turbine blades can reach up to 25% during severe icing conditions, and ice buildup poses risks because of ice throw and component wear. The impact of ice accretion on wind turbines strongly depends on the rate of accumulation and the time duration of an icing event. There is a significant amount of research on modelling ice-induced power losses accounting for either the accumulation of ice on blades or the analysis of power production data. However, there is limited work on identifying the best operational strategies during icing periods. This paper shows how the operation of a large-scale horizontal-axis wind turbine is affected by different icing events and investigates different operational strategies for reducing ice-induced power losses. The considered operational strategies include utilisation of anti-icing, operation shutdown and rotor rotational speed modifications. The NREL (National Renewable Energy Laboratory) 5 MW reference turbine is used for simulating a large-scale horizontal-axis wind turbine. Ice accretion, aerodynamic analysis and anti-icing power demand calculations have been simulated using lewINT and JavaFoil. Blade element momentum theory is used to evaluate wind turbine power performance. Ice shapes have been created for temperatures of −5 and −20 °C, considering wind speed of 15 ms−1, liquid water contents of 0.2–0.36 gm−3 and a median volume diameter of 36.10−6 m. The ice-induced losses are calculated and compared to the power required for anti-icing, thus identifying when it is preferable in comparison to an alternative strategy such as shutting down the turbine. Choosing a suitable strategy for a particular icing condition will help wind turbines to be operated more efficiently in Cold Climates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Louw A (2018) Clean energy investment trends. In: 2017 Louw A (2018) Clean energy investment trends. In: 2017
2.
go back to reference Anon, Global Wind Report, Bloomberg New Energy Finance. (2018) 1–60 Anon, Global Wind Report, Bloomberg New Energy Finance. (2018) 1–60
3.
go back to reference Battisti L (2015) Chapter 4 icing process, wind turbines in cold climates. Springer, Switzerland, pp 177–248 Battisti L (2015) Chapter 4 icing process, wind turbines in cold climates. Springer, Switzerland, pp 177–248
4.
go back to reference Fortin G, Perron J, Ilinca A (2005) Behavior and modeling of cup anemometers under icing conditions Fortin G, Perron J, Ilinca A (2005) Behavior and modeling of cup anemometers under icing conditions
5.
go back to reference Tammelin B, Cavaliere M, Holttinen H, Morgan C, Seifret H, Santti K (1996-1998) Wind energy production in cold climates (WECO) Tammelin B, Cavaliere M, Holttinen H, Morgan C, Seifret H, Santti K (1996-1998) Wind energy production in cold climates (WECO)
6.
go back to reference Makkonen L, Autti M (1991) The effects of icing on wind turbines. Am Soc Mech Eng 575:575–580 Makkonen L, Autti M (1991) The effects of icing on wind turbines. Am Soc Mech Eng 575:575–580
7.
go back to reference Myers T (2001) Extension to the messinger model for aircraft icing. AIAA J 36:211–218CrossRef Myers T (2001) Extension to the messinger model for aircraft icing. AIAA J 36:211–218CrossRef
8.
go back to reference Dimitrova M, Ramdenee D, Ilinca A (2011) Evaluation and mitigation of ice accretion effects on wind turbine blades, bioenergy technology (BE) World Rene Dimitrova M, Ramdenee D, Ilinca A (2011) Evaluation and mitigation of ice accretion effects on wind turbine blades, bioenergy technology (BE) World Rene
9.
go back to reference Homola M, Virk M, M Nicklasson PJ (2012) Performance losses due to ice accretion for a 5 MW wind turbine. Wind Energy 15:379–389CrossRef Homola M, Virk M, M Nicklasson PJ (2012) Performance losses due to ice accretion for a 5 MW wind turbine. Wind Energy 15:379–389CrossRef
10.
go back to reference Zanon A, Gennaro De M, Kuhnelt H (2018) Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies. Renew Energy 115:760–772CrossRef Zanon A, Gennaro De M, Kuhnelt H (2018) Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies. Renew Energy 115:760–772CrossRef
11.
go back to reference Pederson MC, Sorenson H, Swytink-Binnema N, Martinez B, Condra T (2018) Measurements from a cold climate site in Canada: boundary conditions and verification methods for CFD icing models for wind turbines. Cold Regions Sci Technol 147:11–21CrossRef Pederson MC, Sorenson H, Swytink-Binnema N, Martinez B, Condra T (2018) Measurements from a cold climate site in Canada: boundary conditions and verification methods for CFD icing models for wind turbines. Cold Regions Sci Technol 147:11–21CrossRef
12.
go back to reference Lamraoui F, Fortin G, Benoit R, Perron J, Masson C (2013) Atmospheric icing severity: quantification and mapping. Atmos Res 128:57–75CrossRef Lamraoui F, Fortin G, Benoit R, Perron J, Masson C (2013) Atmospheric icing severity: quantification and mapping. Atmos Res 128:57–75CrossRef
13.
go back to reference Lamraoui F, Fortin G, Benoit R, Perron J, Masson C (2014) Atmospheric icing impact on wind turbine production. Cold Regions Sci Technol 100:36–49CrossRef Lamraoui F, Fortin G, Benoit R, Perron J, Masson C (2014) Atmospheric icing impact on wind turbine production. Cold Regions Sci Technol 100:36–49CrossRef
14.
go back to reference Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine of offshore system development. NREL, Golden, COCrossRef Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine of offshore system development. NREL, Golden, COCrossRef
15.
go back to reference Jonkman JM, Hayman GJ, Jonkman BJ, Damiani RR (2009) AeroDyn v15 user’s guide and theory manual. NREL, Golden, CO Jonkman JM, Hayman GJ, Jonkman BJ, Damiani RR (2009) AeroDyn v15 user’s guide and theory manual. NREL, Golden, CO
Metadata
Title
Operational Strategies for a Large-Scale Horizontal-Axis Wind Turbine During Icing Conditions
Authors
D. B. Stoyanov
H. Sarlak
J. D. Nixon
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-18488-9_69