Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Opportunities for PLA and Its Blends in Various Applications

Authors : Teboho Clement Mokhena, Mokgaotsa Jonas Mochane, Emmanuel Rotimi Sadiku, O. Agboola, Maya Jacob John

Published in: Green Biopolymers and their Nanocomposites

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

PLA is one of the promising biopolymer featuring unique properties such as excellent biodegradability, biocompatibility, good mechanical strength and easy processability. Although its properties are comparable to synthetic polymers, its success is impeded by its cost and brittleness. In order to further extend its applicability in different fields, blending with other cheaper and ductile/flexible polymers has been subjecting of the research since its introduction early in the 1880s. It is recognized that direct blending usually results in unanticipated properties because of PLA immiscibility with other polymers. In this chapter, we discuss the challenges faced in direct blending PLA with other polymers and the use of compatibilizers and/or plasticizers to improve the processability and/or performance of the resulting blend. The opportunities and progress made with some strategies to minimize the immiscibility of PLA with other biopolymers are also discussed. We concluded with future trends and recommendations that should enable the production of high-end performance PLA-based bio-blends.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97:1822–1828CrossRef Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polym Degrad Stab 97:1822–1828CrossRef
2.
go back to reference Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914CrossRef Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914CrossRef
3.
go back to reference Armentano I et al (2015a). Bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT-Food Sci Technol 64(2):980–988CrossRef Armentano I et al (2015a). Bio-based PLA_PHB plasticized blend films: processing and structural characterization. LWT-Food Sci Technol 64(2):980–988CrossRef
4.
go back to reference Armentano I et al (2015b) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems Express. Polym Lett 9:583–596CrossRef Armentano I et al (2015b) Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems Express. Polym Lett 9:583–596CrossRef
5.
go back to reference Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Testing 32:760–768CrossRef Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Testing 32:760–768CrossRef
6.
go back to reference Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Euro Polym J 50:255–270CrossRef Arrieta MP, López J, Hernández A, Rayón E (2014) Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. Euro Polym J 50:255–270CrossRef
7.
go back to reference Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008CrossRef Arrieta MP, Samper MD, Aldas M, López J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10:1008CrossRef
8.
go back to reference Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Testing 43:27–37CrossRef Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Testing 43:27–37CrossRef
9.
go back to reference Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly (l-lactide) with poly (ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266CrossRef Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q (2013) Toughening of poly (l-lactide) with poly (ε-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer 54:5257–5266CrossRef
10.
go back to reference Balart JF, Fombuena V, Fenollar O, Boronat T, Sánchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B Eng 86:168–177CrossRef Balart JF, Fombuena V, Fenollar O, Boronat T, Sánchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B Eng 86:168–177CrossRef
11.
go back to reference Bedő D, Imre B, Domján A, Schön P, Vancso GJ, Pukánszky B (2017) Coupling of poly (lactic acid) with a polyurethane elastomer by reactive processing. Euro Polym J 97:409–417CrossRef Bedő D, Imre B, Domján A, Schön P, Vancso GJ, Pukánszky B (2017) Coupling of poly (lactic acid) with a polyurethane elastomer by reactive processing. Euro Polym J 97:409–417CrossRef
12.
go back to reference Bher A, Unalan IU, Auras R, Rubino M, Schvezov CE (2018) Toughening of poly (lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets. Polymers 10:95CrossRef Bher A, Unalan IU, Auras R, Rubino M, Schvezov CE (2018) Toughening of poly (lactic acid) and thermoplastic cassava starch reactive blends using graphene nanoplatelets. Polymers 10:95CrossRef
13.
go back to reference Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly (lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98:959–966CrossRef Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly (lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98:959–966CrossRef
14.
go back to reference Bitinis N, Sanz A, Nogales A, Verdejo R, Lopez-Manchado MA, Ezquerra TA (2012) Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering. Soft Matter 8:8990–8997CrossRef Bitinis N, Sanz A, Nogales A, Verdejo R, Lopez-Manchado MA, Ezquerra TA (2012) Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering. Soft Matter 8:8990–8997CrossRef
15.
go back to reference Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831CrossRef Bitinis N, Verdejo R, Cassagnau P, Lopez-Manchado MA (2011) Structure and properties of polylactide/natural rubber blends. Mater Chem Phys 129:823–831CrossRef
16.
go back to reference Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72:305–313CrossRef Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72:305–313CrossRef
17.
go back to reference Blümm E, Owen AJ (1995) Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/poly (l-lactide) blends. Polymer 36:4077–4081CrossRef Blümm E, Owen AJ (1995) Miscibility, crystallization and melting of poly (3-hydroxybutyrate)/poly (l-lactide) blends. Polymer 36:4077–4081CrossRef
18.
go back to reference Botlhoko OJ, Ramontja J, Ray SS (2017) Thermally shocked graphene oxide-containing biocomposite for thermal management applications RSC. Advances 7:33751–33756 Botlhoko OJ, Ramontja J, Ray SS (2017) Thermally shocked graphene oxide-containing biocomposite for thermal management applications RSC. Advances 7:33751–33756
19.
go back to reference Cabedo L, Feijoo JL, Villanueva MP, Lagarón JM, Giménez E (2006) Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol Symposia 233:191–197CrossRef Cabedo L, Feijoo JL, Villanueva MP, Lagarón JM, Giménez E (2006) Optimization of biodegradable nanocomposites based on aPLA/PCL blends for food packaging applications. Macromol Symposia 233:191–197CrossRef
20.
go back to reference Can E, Udenir G, Kanneci AI, Kose G, Bucak S (2011) Investigation of PLLA/PCL blends and paclitaxel release profiles. AAPS Pharmscitech 12:1442–1453CrossRef Can E, Udenir G, Kanneci AI, Kose G, Bucak S (2011) Investigation of PLLA/PCL blends and paclitaxel release profiles. AAPS Pharmscitech 12:1442–1453CrossRef
21.
go back to reference Carbonell-Verdu A, Garcia-Garcia D, Dominici F, Torre L, Sanchez-Nacher L, Balart R (2017) PLA films with improved flexibility properties by using maleinized cottonseed oil. Eur Polym J 91:248–259CrossRef Carbonell-Verdu A, Garcia-Garcia D, Dominici F, Torre L, Sanchez-Nacher L, Balart R (2017) PLA films with improved flexibility properties by using maleinized cottonseed oil. Eur Polym J 91:248–259CrossRef
22.
go back to reference Chavalitpanya K, Phattanarudee S (2013) Poly (lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia 34:542–548CrossRef Chavalitpanya K, Phattanarudee S (2013) Poly (lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Procedia 34:542–548CrossRef
23.
go back to reference Chen G-X, Kim H-S, Kim E-S, Yoon J-S (2005) Compatibilization-like effect of reactive organoclay on the poly (l-lactide)/poly (butylene succinate) blends. Polymer 46:11829–11836CrossRef Chen G-X, Kim H-S, Kim E-S, Yoon J-S (2005) Compatibilization-like effect of reactive organoclay on the poly (l-lactide)/poly (butylene succinate) blends. Polymer 46:11829–11836CrossRef
24.
go back to reference Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816CrossRef Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816CrossRef
25.
go back to reference Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264CrossRef Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264CrossRef
26.
go back to reference Chiu H-T, Huang S-Y, Chen Y-F, Kuo M-T, Chiang T-Y, Chang C-Y, Wang Y-H (2013) Heat treatment effects on the mechanical properties and morphologies of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Int J Polym Sci 2013:1–11CrossRef Chiu H-T, Huang S-Y, Chen Y-F, Kuo M-T, Chiang T-Y, Chang C-Y, Wang Y-H (2013) Heat treatment effects on the mechanical properties and morphologies of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Int J Polym Sci 2013:1–11CrossRef
27.
go back to reference Cohn D, Salomon AH (2005) Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26:2297–2305CrossRef Cohn D, Salomon AH (2005) Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26:2297–2305CrossRef
28.
go back to reference Dil EJ, Favis BD (2015) Localization of micro-and nano-silica particles in heterophase poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Polymer 76:295–306CrossRef Dil EJ, Favis BD (2015) Localization of micro-and nano-silica particles in heterophase poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends. Polymer 76:295–306CrossRef
29.
go back to reference Feng L, Bian X, Cui Y, Chen Z, Li G, Chen X (2013) Flexibility improvement of poly (l‐lactide) by reactive blending with poly (ether urethane) containing poly (ethylene glycol) blocks. Macromol Chem Phys 214:824–834CrossRef Feng L, Bian X, Cui Y, Chen Z, Li G, Chen X (2013) Flexibility improvement of poly (l‐lactide) by reactive blending with poly (ether urethane) containing poly (ethylene glycol) blocks. Macromol Chem Phys 214:824–834CrossRef
30.
go back to reference Feng L, Bian X, Li G, Chen Z, Chen X (2016) Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly (ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. Polym Degrad Stab 125:148–155CrossRef Feng L, Bian X, Li G, Chen Z, Chen X (2016) Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly (ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. Polym Degrad Stab 125:148–155CrossRef
31.
go back to reference Ferri JM, Garcia-Garcia D, Sánchez-Nacher L, Fenollar O, Balart R (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly (lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68CrossRef Ferri JM, Garcia-Garcia D, Sánchez-Nacher L, Fenollar O, Balart R (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly (lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68CrossRef
32.
go back to reference Ferri JM, Garcia‐Garcia D, Montanes N, Fenollar O, Balart R (2017) The effect of maleinized linseed oil as biobased plasticizer in poly (lactic acid)‐based formulations. Polym Int 66:882–891CrossRef Ferri JM, Garcia‐Garcia D, Montanes N, Fenollar O, Balart R (2017) The effect of maleinized linseed oil as biobased plasticizer in poly (lactic acid)‐based formulations. Polym Int 66:882–891CrossRef
33.
go back to reference Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)/poly (butylene succinate) films. Materials 10:809CrossRef Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)/poly (butylene succinate) films. Materials 10:809CrossRef
34.
go back to reference Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Pérez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly (lactic acid)-PLA, poly (ε-caprolactone)-PCL and poly (3-hydroxybutyrate)-PHB. Materials 10:1339CrossRef Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Pérez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly (lactic acid)-PLA, poly (ε-caprolactone)-PCL and poly (3-hydroxybutyrate)-PHB. Materials 10:1339CrossRef
35.
go back to reference Han J-J, Huang H-X (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120:3217–3223CrossRef Han J-J, Huang H-X (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120:3217–3223CrossRef
36.
go back to reference Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Euro Polym J 47:2134–2144CrossRef Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Euro Polym J 47:2134–2144CrossRef
37.
go back to reference Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly (lactide): chemical grafting of citrate on PLA by reactive extrusion. Euro Polym J 48:404–415CrossRef Hassouna F, Raquez J-M, Addiego F, Toniazzo V, Dubois P, Ruch D (2012) New development on plasticized poly (lactide): chemical grafting of citrate on PLA by reactive extrusion. Euro Polym J 48:404–415CrossRef
38.
go back to reference Hongdilokkul P, Keeratipinit K, Chawthai S, Hararak B, Seadan M, Suttiruengwong S (2015) A study on properties of PLA/PBAT from blown film process. IOP Conf Ser Mater Sci Eng 87:012112CrossRef Hongdilokkul P, Keeratipinit K, Chawthai S, Hararak B, Seadan M, Suttiruengwong S (2015) A study on properties of PLA/PBAT from blown film process. IOP Conf Ser Mater Sci Eng 87:012112CrossRef
39.
go back to reference Hu Y, Daoud WA, Cheuk KKL, Lin CSK (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly (lactic acid). Materials 9:133CrossRef Hu Y, Daoud WA, Cheuk KKL, Lin CSK (2016) Newly developed techniques on polycondensation, ring-opening polymerization and polymer modification: focus on poly (lactic acid). Materials 9:133CrossRef
40.
go back to reference Imre B, Bedő D, Domján A, Schön P, Vancso GJ, Pukánszky B (2013) Structure, properties and interfacial interactions in poly (lactic acid)/polyurethane blends prepared by reactive processing European Polymer Journal 49:3104–3113CrossRef Imre B, Bedő D, Domján A, Schön P, Vancso GJ, Pukánszky B (2013) Structure, properties and interfacial interactions in poly (lactic acid)/polyurethane blends prepared by reactive processing European Polymer Journal 49:3104–3113CrossRef
41.
go back to reference Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2012) Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends. J Appl Polym Sci 125:745–754CrossRef Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2012) Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends. J Appl Polym Sci 125:745–754CrossRef
42.
go back to reference Krishnan S, Pandey P, Mohanty S, Nayak SK (2016) Toughening of polylactic acid: an overview of research progress. Polym-Plast Technol Eng 55:1623–1652CrossRef Krishnan S, Pandey P, Mohanty S, Nayak SK (2016) Toughening of polylactic acid: an overview of research progress. Polym-Plast Technol Eng 55:1623–1652CrossRef
43.
go back to reference Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415CrossRef Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101:8406–8415CrossRef
44.
go back to reference Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly (lactic acid). J Appl Polym Sci 66:1507–1513 Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly (lactic acid). J Appl Polym Sci 66:1507–1513
45.
go back to reference Le Bolay N, Lamure A, Leis NG, Subhani A (2012) How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer-co-grinding enhances use properties of renewable PLA-starch composites. Chem Eng Process 56:1–9CrossRef Le Bolay N, Lamure A, Leis NG, Subhani A (2012) How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer-co-grinding enhances use properties of renewable PLA-starch composites. Chem Eng Process 56:1–9CrossRef
46.
go back to reference Lee C, Hong S (2013) An overview of the synthesis and synthetic mechanism of poly (lactic acid). Modern Chem Appl 2:144 Lee C, Hong S (2013) An overview of the synthesis and synthetic mechanism of poly (lactic acid). Modern Chem Appl 2:144
47.
go back to reference Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119:2439–2448CrossRef Li H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119:2439–2448CrossRef
48.
go back to reference Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219CrossRef
49.
go back to reference Mathurosemontri S, Auwongsuwan P, Nagai S, Hamada H (2014) The effect of injection speed on morphology and mechanical properties of polyoxymethylene/poly (lactic acid) blends. Energy Procedia 56:57–64CrossRef Mathurosemontri S, Auwongsuwan P, Nagai S, Hamada H (2014) The effect of injection speed on morphology and mechanical properties of polyoxymethylene/poly (lactic acid) blends. Energy Procedia 56:57–64CrossRef
50.
go back to reference Matta AK, Rao RRU, Suman KNS, Rambabu V (2014) Preparation and characterization of biodegradable PLA/PCL polymeric blends Procedia. Mater Sci 6:1266–1270 Matta AK, Rao RRU, Suman KNS, Rambabu V (2014) Preparation and characterization of biodegradable PLA/PCL polymeric blends Procedia. Mater Sci 6:1266–1270
51.
go back to reference Mauck SC et al (2016) Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer. Macromolecules 49:1605–1615CrossRef Mauck SC et al (2016) Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer. Macromolecules 49:1605–1615CrossRef
52.
go back to reference Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282CrossRef Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282CrossRef
53.
go back to reference Muller J, González-Martínez C, Chiralt A (2017) Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials 10:952CrossRef Muller J, González-Martínez C, Chiralt A (2017) Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials 10:952CrossRef
54.
go back to reference Notta-Cuvier D et al. (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Testing 36:1–9CrossRef Notta-Cuvier D et al. (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Testing 36:1–9CrossRef
55.
go back to reference Odent J et al (2015) Mechanistic insights on nanosilica self-networking inducing ultra-toughness of rubber-modified polylactide-based materials. Nanocomposites 1:113–125CrossRef Odent J et al (2015) Mechanistic insights on nanosilica self-networking inducing ultra-toughness of rubber-modified polylactide-based materials. Nanocomposites 1:113–125CrossRef
56.
go back to reference Ohkoshi I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly [(S)-lactide] with atactic poly [(R, S)-3-hydroxybutyrate]. Polymer 41:5985–5992CrossRef Ohkoshi I, Abe H, Doi Y (2000) Miscibility and solid-state structures for blends of poly [(S)-lactide] with atactic poly [(R, S)-3-hydroxybutyrate]. Polymer 41:5985–5992CrossRef
57.
go back to reference Ojijo V, Sinha Ray S, Sadiku R (2012) Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly [(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces 4:2395–2405CrossRef Ojijo V, Sinha Ray S, Sadiku R (2012) Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly [(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces 4:2395–2405CrossRef
58.
go back to reference Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971–98982CrossRef Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M (2015) Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv 5:98971–98982CrossRef
59.
go back to reference Oyama HT (2009) Super-tough poly (lactic acid) materials: Reactive blending with ethylene copolymer. Polymer 50:747–751CrossRef Oyama HT (2009) Super-tough poly (lactic acid) materials: Reactive blending with ethylene copolymer. Polymer 50:747–751CrossRef
60.
go back to reference Patrício T, Bártolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297CrossRef Patrício T, Bártolo P (2013) Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng 59:292–297CrossRef
61.
go back to reference Patrício T, Glória A, Bártolo P (2013) Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng 32 Patrício T, Glória A, Bártolo P (2013) Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications. Chem Eng 32
62.
go back to reference Pivsa-Art S, Kord-Sa-Ard J, Pivsa-Art W, Wongpajan R, Narongchai O, Pavasupree S, Hamada H (2016) Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia 89:353–360CrossRef Pivsa-Art S, Kord-Sa-Ard J, Pivsa-Art W, Wongpajan R, Narongchai O, Pavasupree S, Hamada H (2016) Effect of compatibilizer on PLA/PP blend for injection molding. Energy Procedia 89:353–360CrossRef
63.
go back to reference Pivsa-Art S, Phansroy N, Thodsaratpiyakul W, Sukkaew C, Pivsa-Art W, Lintong S, Dedgheng T (2014) Preparation of biodegradable polymer copolyesteramides from L-lactic acid oligomers and polyamide monomers. Energy Procedia 56:648–658CrossRef Pivsa-Art S, Phansroy N, Thodsaratpiyakul W, Sukkaew C, Pivsa-Art W, Lintong S, Dedgheng T (2014) Preparation of biodegradable polymer copolyesteramides from L-lactic acid oligomers and polyamide monomers. Energy Procedia 56:648–658CrossRef
64.
go back to reference Pivsa-Art S, Thumsorn S, Pavasupree S, Narongchai O, Pivsa-Art W, Yamane H, Ohara H (2013a) Effect of Additive on Crystallization and Mechanical Properties of Polymer Blends of Poly (lactic acid) and Poly [(butylene succinate)-co-adipate]. Energy Procedia 34:563–571CrossRef Pivsa-Art S, Thumsorn S, Pavasupree S, Narongchai O, Pivsa-Art W, Yamane H, Ohara H (2013a) Effect of Additive on Crystallization and Mechanical Properties of Polymer Blends of Poly (lactic acid) and Poly [(butylene succinate)-co-adipate]. Energy Procedia 34:563–571CrossRef
65.
go back to reference Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013b) Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 34:549–554CrossRef Pivsa-Art W, Chaiyasat A, Pivsa-Art S, Yamane H, Ohara H (2013b) Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers. Energy Procedia 34:549–554CrossRef
66.
go back to reference Ploypetchara N, Suppakul P, Atong D, Pechyen C (2014) Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia 56:201–210CrossRef Ploypetchara N, Suppakul P, Atong D, Pechyen C (2014) Blend of polypropylene/poly (lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia 56:201–210CrossRef
67.
go back to reference Ramos M, Jiménez A, Peltzer M, Garrigós MC (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 162:149–155CrossRef Ramos M, Jiménez A, Peltzer M, Garrigós MC (2014) Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem 162:149–155CrossRef
68.
go back to reference Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269CrossRef Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269CrossRef
69.
go back to reference Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly (lactic acid) compatibilized with telechelic liquid natural rubber. Polym Testing 54:196–202CrossRef Rosli NA, Ahmad I, Anuar FH, Abdullah I (2016) Mechanical and thermal properties of natural rubber-modified poly (lactic acid) compatibilized with telechelic liquid natural rubber. Polym Testing 54:196–202CrossRef
70.
go back to reference Shahlari M, Lee S (2012) Mechanical and morphological properties of poly (butylene adipate‐co‐terephthalate) and poly (lactic acid) blended with organically modified silicate layers. Polym Eng Sci 52:1420–1428CrossRef Shahlari M, Lee S (2012) Mechanical and morphological properties of poly (butylene adipate‐co‐terephthalate) and poly (lactic acid) blended with organically modified silicate layers. Polym Eng Sci 52:1420–1428CrossRef
71.
go back to reference Shin BY, Jang SH, Kim BS (2011) Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch. Polym Eng Sci 51:826–834CrossRef Shin BY, Jang SH, Kim BS (2011) Thermal, morphological, and mechanical properties of biobased and biodegradable blends of poly (lactic acid) and chemically modified thermoplastic starch. Polym Eng Sci 51:826–834CrossRef
72.
go back to reference Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly (lactic acid)(PLA) and poly (butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82CrossRef Signori F, Coltelli M-B, Bronco S (2009) Thermal degradation of poly (lactic acid)(PLA) and poly (butylene adipate-co-terephthalate)(PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82CrossRef
73.
go back to reference Soares FC, Yamashita F, Mueller CMO, Pires ATN (2013) Thermoplastic starch/poly (lactic acid) sheets coated with cross-linked chitosan. Polym Testing 32:94–98CrossRef Soares FC, Yamashita F, Mueller CMO, Pires ATN (2013) Thermoplastic starch/poly (lactic acid) sheets coated with cross-linked chitosan. Polym Testing 32:94–98CrossRef
74.
go back to reference Sookprasert P, Hinchiranan N (2015) Preparation of natural rubber‐graft‐poly (lactic acid) used as a compatibilizer for poly (lactic acid)/NR blends. Macromol Symp 354:125–130CrossRef Sookprasert P, Hinchiranan N (2015) Preparation of natural rubber‐graft‐poly (lactic acid) used as a compatibilizer for poly (lactic acid)/NR blends. Macromol Symp 354:125–130CrossRef
75.
go back to reference Spinella S, Samuel C, Raquez J-M, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4:2517–2527CrossRef Spinella S, Samuel C, Raquez J-M, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4:2517–2527CrossRef
76.
go back to reference Todo M, Park S-D, Takayama T, Arakawa K (2007) Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng Fract Mech 74:1872–1883CrossRef Todo M, Park S-D, Takayama T, Arakawa K (2007) Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Eng Fract Mech 74:1872–1883CrossRef
77.
go back to reference Torres A et al. (2017) Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. Euro Polym J 89:195–210CrossRef Torres A et al. (2017) Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. Euro Polym J 89:195–210CrossRef
78.
go back to reference Urquijo J, Guerrica‐Echevarría G, Eguiazábal JI (2015) Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. J Appl Polym Sci 132CrossRef Urquijo J, Guerrica‐Echevarría G, Eguiazábal JI (2015) Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. J Appl Polym Sci 132CrossRef
79.
go back to reference Valerio O, Misra M, Mohanty AK (2017a) Statistical design of sustainable thermoplastic blends of poly (glycerol succinate-co-maleate)(PGSMA), poly (lactic acid)(PLA) and poly (butylene succinate)(PBS). Polym Testing 65:420–428CrossRef Valerio O, Misra M, Mohanty AK (2017a) Statistical design of sustainable thermoplastic blends of poly (glycerol succinate-co-maleate)(PGSMA), poly (lactic acid)(PLA) and poly (butylene succinate)(PBS). Polym Testing 65:420–428CrossRef
80.
go back to reference Valerio O, Misra M, Mohanty AK (2017b) Sustainable biobased blends of poly (lactic acid)(PLA) and poly (glycerol succinate-co-maleate)(PGSMA) with balanced performance prepared by dynamic vulcanization. RSC Adv 7:38594–38603CrossRef Valerio O, Misra M, Mohanty AK (2017b) Sustainable biobased blends of poly (lactic acid)(PLA) and poly (glycerol succinate-co-maleate)(PGSMA) with balanced performance prepared by dynamic vulcanization. RSC Adv 7:38594–38603CrossRef
81.
go back to reference Valerio O, Pin JM, Misra M, Mohanty AK (2016) Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega 1:1284–1295CrossRef Valerio O, Pin JM, Misra M, Mohanty AK (2016) Synthesis of glycerol-based biopolyesters as toughness enhancers for polylactic acid bioplastic through reactive extrusion. ACS Omega 1:1284–1295CrossRef
82.
go back to reference Wachirahuttapong S, Thongpin C, Sombatsompop N (2016) Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 89:198–206CrossRef Wachirahuttapong S, Thongpin C, Sombatsompop N (2016) Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 89:198–206CrossRef
83.
go back to reference Wang L-F, Rhim J-W, Hong S-I (2016) Preparation of poly (lactide)/poly (butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT-Food Sci Technol 68:454–461CrossRef Wang L-F, Rhim J-W, Hong S-I (2016) Preparation of poly (lactide)/poly (butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT-Food Sci Technol 68:454–461CrossRef
84.
go back to reference Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend under soil conditions. Polym Testing 32:918–926CrossRef Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z (2013) Biodegradation behavior of poly (butylene adipate-co-terephthalate)(PBAT), poly (lactic acid)(PLA), and their blend under soil conditions. Polym Testing 32:918–926CrossRef
85.
go back to reference Wokadala OC, Emmambux NM, Ray SS (2014) Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohyd Polym 112:216–224CrossRef Wokadala OC, Emmambux NM, Ray SS (2014) Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohyd Polym 112:216–224CrossRef
86.
go back to reference Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly (ε-caprolactone)/polylactide blend. Biomacromolecules 10:417–424CrossRef Wu D, Zhang Y, Zhang M, Yu W (2009) Selective localization of multiwalled carbon nanotubes in poly (ε-caprolactone)/polylactide blend. Biomacromolecules 10:417–424CrossRef
87.
go back to reference Xiu H et al. (2014) Improving impact toughness of polylactide/poly (ether) urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer 55:1593–1600CrossRef Xiu H et al. (2014) Improving impact toughness of polylactide/poly (ether) urethane blends via designing the phase morphology assisted by hydrophilic silica nanoparticles. Polymer 55:1593–1600CrossRef
88.
go back to reference Xu C, Yuan D, Fu L, Chen Y (2014) Physical blend of PLA/NR with co-continuous phase structure: preparation, rheology property, mechanical properties and morphology. Polym Testing 37:94–101CrossRef Xu C, Yuan D, Fu L, Chen Y (2014) Physical blend of PLA/NR with co-continuous phase structure: preparation, rheology property, mechanical properties and morphology. Polym Testing 37:94–101CrossRef
89.
go back to reference Yeh J-T, Tsou C-H, Huang C-Y, Chen K-N, Wu C-S, Chai W-L (2010) Compatible and crystallization properties of poly (lactic acid)/poly (butylene adipate‐co‐terephthalate) blends. J Appl Polym Sci 116:680–687 Yeh J-T, Tsou C-H, Huang C-Y, Chen K-N, Wu C-S, Chai W-L (2010) Compatible and crystallization properties of poly (lactic acid)/poly (butylene adipate‐co‐terephthalate) blends. J Appl Polym Sci 116:680–687
90.
go back to reference Yu F, Huang H-X (2015) Simultaneously toughening and reinforcing poly (lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym Testing 45:107–113CrossRef Yu F, Huang H-X (2015) Simultaneously toughening and reinforcing poly (lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym Testing 45:107–113CrossRef
91.
go back to reference Yuan D, Chen K, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohyd Polym 113:438–445CrossRef Yuan D, Chen K, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. Carbohyd Polym 113:438–445CrossRef
92.
go back to reference Yuan D, Chen Z, Chen K, Mou W, Chen Y (2016) Phenolic resin-induced dynamically vulcanized polylactide/natural rubber blends. Polym-Plast Technol Eng 55:1115–1123CrossRef Yuan D, Chen Z, Chen K, Mou W, Chen Y (2016) Phenolic resin-induced dynamically vulcanized polylactide/natural rubber blends. Polym-Plast Technol Eng 55:1115–1123CrossRef
93.
go back to reference Zeng C, Zhang N-W, Ren J (2012) Synthesis and properties of bio‐based thermoplastic polyurethane based on poly (L‐lactic acid) copolymer polydiol. J Appl Polym Sci 125:2564–2576CrossRef Zeng C, Zhang N-W, Ren J (2012) Synthesis and properties of bio‐based thermoplastic polyurethane based on poly (L‐lactic acid) copolymer polydiol. J Appl Polym Sci 125:2564–2576CrossRef
94.
go back to reference Zeng J-B, Li K-A, Du A-K (2015) Compatibilization strategies in poly (lactic acid)-based blends RSC. Advances 5:32546–32565 Zeng J-B, Li K-A, Du A-K (2015) Compatibilization strategies in poly (lactic acid)-based blends RSC. Advances 5:32546–32565
95.
go back to reference Zeng J-B, Li Y-D, Li W-D, Yang K-K, Wang X-L, Wang Y-Z (2009) Synthesis and properties of poly (ester urethane) s consisting of poly (L-lactic acid) and poly (ethylene succinate) segments. Industrial Eng Chem Res 48:1706–1711CrossRef Zeng J-B, Li Y-D, Li W-D, Yang K-K, Wang X-L, Wang Y-Z (2009) Synthesis and properties of poly (ester urethane) s consisting of poly (L-lactic acid) and poly (ethylene succinate) segments. Industrial Eng Chem Res 48:1706–1711CrossRef
96.
go back to reference Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79CrossRef Zhang M, Thomas NL (2011) Blending polylactic acid with polyhydroxybutyrate: the effect on thermal, mechanical, and biodegradation properties. Adv Polym Technol 30:67–79CrossRef
97.
go back to reference Zhang N, Wang Q, Ren J, Wang L (2009a) Preparation and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256CrossRef Zhang N, Wang Q, Ren J, Wang L (2009a) Preparation and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256CrossRef
98.
go back to reference Zhang W, Chen L, Zhang Y (2009) Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 50:1311–1315CrossRef Zhang W, Chen L, Zhang Y (2009) Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer. Polymer 50:1311–1315CrossRef
Metadata
Title
Opportunities for PLA and Its Blends in Various Applications
Authors
Teboho Clement Mokhena
Mokgaotsa Jonas Mochane
Emmanuel Rotimi Sadiku
O. Agboola
Maya Jacob John
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8063-1_3

Premium Partners