Skip to main content
Top

2021 | OriginalPaper | Chapter

8. Optical Autonomous Navigation Technology

Authors : Dayi Wang, Maodeng Li, Xiangyu Huang, Xiaowen Zhang

Published in: Spacecraft Autonomous Navigation Technologies Based on Multi-source Information Fusion

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents optical autonomous navigation technology. The principles of optical autonomous navigation and optical imaging sensors are introduced in 8.1 and Sect. 8.2, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
\( C(m,n) \) is the number of the combinations each of which is composed of n elements taken from m elements.
 
Literature
1.
go back to reference Riedel, J., et al. 2000. Deep space 1 technology validation report: Autonomous optical navigation. Pasadena: Jet Propulsion Laboratory. Riedel, J., et al. 2000. Deep space 1 technology validation report: Autonomous optical navigation. Pasadena: Jet Propulsion Laboratory.
2.
go back to reference Miso, T., T. Hashimoto, and K. Ninomiya. 1999. Optical guidance for autonomous landing of spacecraft. IEEE Transactions on Aerospace and Electronic Systems 35 (2): 459–473.CrossRef Miso, T., T. Hashimoto, and K. Ninomiya. 1999. Optical guidance for autonomous landing of spacecraft. IEEE Transactions on Aerospace and Electronic Systems 35 (2): 459–473.CrossRef
3.
go back to reference Rayman, M.D. 2002. The successful conclusion of the deep space 1 mission: important results without a flashy title. Rayman, M.D. 2002. The successful conclusion of the deep space 1 mission: important results without a flashy title.
4.
go back to reference Graf, J.E., et al. 2005. The Mars reconnaissance orbiter mission. Acta Astronautica 57 (2): 566–578.CrossRef Graf, J.E., et al. 2005. The Mars reconnaissance orbiter mission. Acta Astronautica 57 (2): 566–578.CrossRef
5.
go back to reference Bhat, R.S., et al. 2004. WILD2 approach maneuver strategy used for Stardust spacecraft. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration. Bhat, R.S., et al. 2004. WILD2 approach maneuver strategy used for Stardust spacecraft. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics and Space Administration.
6.
go back to reference Liu, Z., et al. 2015. High precision landing site mapping and rover localization for Chang’e-3 mission. Science China Physics, Mechanics & Astronomy 58 (1): 1–11. Liu, Z., et al. 2015. High precision landing site mapping and rover localization for Chang’e-3 mission. Science China Physics, Mechanics & Astronomy 58 (1): 1–11.
7.
go back to reference Kubitschek, D.G., et al. 2006. Deep impact autonomous navigation: the trials of targeting the unknown. Kubitschek, D.G., et al. 2006. Deep impact autonomous navigation: the trials of targeting the unknown.
8.
go back to reference Zhang, X.W., D.Y. Wang, and X.Y. Huang. 2009. Study on the selection of the beacon asteroids in autonomous optical navigation for interplanetary exploration. Journal of Astronautics 30 (3): 947–952. Zhang, X.W., D.Y. Wang, and X.Y. Huang. 2009. Study on the selection of the beacon asteroids in autonomous optical navigation for interplanetary exploration. Journal of Astronautics 30 (3): 947–952.
9.
go back to reference Xu, W., et al. 2007. Selection and planning of asteroids for deep space autonomous optical navigation. Acta Aeronautica Et Astronautica Sinica 28 (4): 891–896. Xu, W., et al. 2007. Selection and planning of asteroids for deep space autonomous optical navigation. Acta Aeronautica Et Astronautica Sinica 28 (4): 891–896.
10.
go back to reference Polle, B., et al. 2003. Autonomous on-board navigation for interplanetary missions. Advances in the Astronautical Sciences 113: 277–293. Polle, B., et al. 2003. Autonomous on-board navigation for interplanetary missions. Advances in the Astronautical Sciences 113: 277–293.
11.
go back to reference Chausson, L. and S. Delavault. 2003. Optical navigation performance during interplanetary cruise. In Proceedings of the 17th International Symposium on Space Flight Dynamics. Chausson, L. and S. Delavault. 2003. Optical navigation performance during interplanetary cruise. In Proceedings of the 17th International Symposium on Space Flight Dynamics.
12.
go back to reference Bhaskaran, S., et al. 1998. Orbit determination performance evaluation of the deep space 1 autonomous navigation system. In AAS/AIAA Spaceflight Mechanics Meeting, Monterrey, CA. Bhaskaran, S., et al. 1998. Orbit determination performance evaluation of the deep space 1 autonomous navigation system. In AAS/AIAA Spaceflight Mechanics Meeting, Monterrey, CA.
14.
go back to reference Bowell, E., et al. 1989. Application of photometric models to asteroids. In Asteroids II. Bowell, E., et al. 1989. Application of photometric models to asteroids. In Asteroids II.
15.
go back to reference Romanishin, W., and S.C. Tegler. 2005. Accurate absolute magnitudes for Kuiper belt objects and Centaurs. Icarus 179 (2): 523–526.CrossRef Romanishin, W., and S.C. Tegler. 2005. Accurate absolute magnitudes for Kuiper belt objects and Centaurs. Icarus 179 (2): 523–526.CrossRef
16.
go back to reference Christian, J.A., and E.G. Lightsey. 2009. Review of options for autonomous cislunar navigation. Journal of Spacecraft and Rockets 46 (5): 1023–1036.CrossRef Christian, J.A., and E.G. Lightsey. 2009. Review of options for autonomous cislunar navigation. Journal of Spacecraft and Rockets 46 (5): 1023–1036.CrossRef
17.
go back to reference Shuster, M.D., and S.D. Oh. 1981. Three-axis attitude determination from vector observations. Journal of Guidance, Control and Dynamics 4 (1): 70–77.CrossRef Shuster, M.D., and S.D. Oh. 1981. Three-axis attitude determination from vector observations. Journal of Guidance, Control and Dynamics 4 (1): 70–77.CrossRef
18.
go back to reference Schlee, F., and N. Toda. 1967. Autonomous orbital navigation by optical tracking of unknown landmarks. Journal of Spacecraft and Rockets 4 (12): 1644–1648.CrossRef Schlee, F., and N. Toda. 1967. Autonomous orbital navigation by optical tracking of unknown landmarks. Journal of Spacecraft and Rockets 4 (12): 1644–1648.CrossRef
19.
go back to reference Levine, G.M. 1966. A method of orbital navigation using optical sightings to unknown landmarks. AIAA Journal 4 (11): 1928–1931.CrossRef Levine, G.M. 1966. A method of orbital navigation using optical sightings to unknown landmarks. AIAA Journal 4 (11): 1928–1931.CrossRef
20.
go back to reference Li, M., et al. 2013. Constrained estimation for autonomous navigation using unknown landmarks. In Chinese Automation Congress (CAC), IEEE. Li, M., et al. 2013. Constrained estimation for autonomous navigation using unknown landmarks. In Chinese Automation Congress (CAC), IEEE.
21.
go back to reference Keenan, R.V. and J.D. Regenhardt. 1962. Star occultation measurements as an aid to navigation in cis-lunar space. Massachusetts Institute of Technology. Keenan, R.V. and J.D. Regenhardt. 1962. Star occultation measurements as an aid to navigation in cis-lunar space. Massachusetts Institute of Technology.
22.
go back to reference Psiaki, M.L., and J.C. Hinks. 2007. Autonomous lunar orbit determination using star occultation measurements. In AIAA Guidance, Navigation and Control Conference and Exhhibit. Psiaki, M.L., and J.C. Hinks. 2007. Autonomous lunar orbit determination using star occultation measurements. In AIAA Guidance, Navigation and Control Conference and Exhhibit.
23.
go back to reference Landgraf, M., et al. 2006. Optical navigation for lunar exploration missions. In 57th International Astronautical Congress, I AC Paper IAC-06-C1. Landgraf, M., et al. 2006. Optical navigation for lunar exploration missions. In 57th International Astronautical Congress, I AC Paper IAC-06-C1.
24.
go back to reference Ning, X., et al. 2013. Autonomous satellite navigation using starlight refraction angle measurements. Advances in Space Research 51 (9): 1761–1772.CrossRef Ning, X., et al. 2013. Autonomous satellite navigation using starlight refraction angle measurements. Advances in Space Research 51 (9): 1761–1772.CrossRef
25.
go back to reference Wang, X., J. Xie, and S. Ma. 2010. Starlight atmospheric refraction model for a continuous range of height. Journal of Guidance, Control and Dynamics 33 (2): 634.CrossRef Wang, X., J. Xie, and S. Ma. 2010. Starlight atmospheric refraction model for a continuous range of height. Journal of Guidance, Control and Dynamics 33 (2): 634.CrossRef
26.
go back to reference Gounley, R., R. White, and E. Gai. 1984. Autonomous satellite navigation by stellar refraction. Journal of Guidance 7 (2): 129–134.CrossRef Gounley, R., R. White, and E. Gai. 1984. Autonomous satellite navigation by stellar refraction. Journal of Guidance 7 (2): 129–134.CrossRef
27.
go back to reference Fang, J., X. Ning, and Y. Tian. 2017. Principle and method of autonomous celestial navigation system. National Defense Industry Press. Fang, J., X. Ning, and Y. Tian. 2017. Principle and method of autonomous celestial navigation system. National Defense Industry Press.
28.
go back to reference Ham, F.M., and R.G. Brown. 1983. Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems 2: 269–273.CrossRef Ham, F.M., and R.G. Brown. 1983. Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems 2: 269–273.CrossRef
29.
go back to reference Li, M., W. Jing, and X. Huang. 2012. Dual cone-scanning horizon sensor orbit and attitude corrections for Earth’s oblateness. Journal of Guidance, Control and Dynamics 35 (1): 344–349.CrossRef Li, M., W. Jing, and X. Huang. 2012. Dual cone-scanning horizon sensor orbit and attitude corrections for Earth’s oblateness. Journal of Guidance, Control and Dynamics 35 (1): 344–349.CrossRef
Metadata
Title
Optical Autonomous Navigation Technology
Authors
Dayi Wang
Maodeng Li
Xiangyu Huang
Xiaowen Zhang
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4879-6_8

Premium Partner