Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Photonic Network Communications 1/2020

17-06-2020 | Original Paper

Optical four-channel demultiplexer based on air-bridge structure and graphite-type ring resonators

Authors: Saleh Naghizade, Saber Mohammadi

Published in: Photonic Network Communications | Issue 1/2020

Login to get access
share
SHARE

Abstract

A novel an optical four-channel demultiplexer based on a hexagonal lattice shape of embedded air holes in dielectric substrate (air-bridge type) is proposed. Demultiplexing for each channel is obtained by designing the graphite-type ring resonator which consists of small air hole defects in own unit cells. The physical parameters which govern the demultiplexer performance are investigated. It is observed that employing big air hole as a defect in the end of input waveguide enhanced the coupling efficiency between the rings and waveguides. By engineering the refractive index of substrate and size of air holes, the proposed demultiplexer is tuned. The demultiplexer has an average quality factor > 3000 and channel spacing \(\Delta \lambda \le 2\;{\text{nm}}\). We showed that big air hole defect in the end of input waveguide is an effective scheme for improving the transmission efficiency and cross talk between channels. The average transmission efficiency and cross talk value are above 98% and − 23 dB, respectively. The total size of proposed structure and its maximum delay time are 289 μm2 and 0.3 ps, respectively. Our demultiplexer has an easy fabrication structure, and it can find key applications for many cores CPU in an on-chip optical network and the dense wavelength demultiplexing in optical integrated circuits.
Literature
1.
go back to reference Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic crystals: molding the flow of light, 2nd edn. PrincetonUniversity Press, Princeton (2008) MATH Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic crystals: molding the flow of light, 2nd edn. PrincetonUniversity Press, Princeton (2008) MATH
2.
go back to reference Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quantum Electron. 40, 603–613 (2008) Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quantum Electron. 40, 603–613 (2008)
3.
go back to reference Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J.: Two-dimensional Si photonic crystals on oxide using SOI substrate. Opt. Quantum Electron. 34, 113 (2002) Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J.: Two-dimensional Si photonic crystals on oxide using SOI substrate. Opt. Quantum Electron. 34, 113 (2002)
4.
go back to reference Rawal, S., Sinha, R.K.: Design, analysis and optimizationof silicon-on-insulator photonic crystal dual band wavelengthdemultiplexer. Opt. Commun. 686, 3889–3894 (2009) demultiplexer. Opt. Commun. 686, 3889–3894 (2009) Rawal, S., Sinha, R.K.: Design, analysis and optimizationof silicon-on-insulator photonic crystal dual band wavelengthdemultiplexer. Opt. Commun. 686, 3889–3894 (2009) demultiplexer. Opt. Commun. 686, 3889–3894 (2009)
5.
go back to reference Naghizade, S., Sattari-Esfahlan, S.M.: High-performance ultracompact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw. Commun. 34, 445–450 (2017) Naghizade, S., Sattari-Esfahlan, S.M.: High-performance ultracompact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw. Commun. 34, 445–450 (2017)
6.
go back to reference Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. LightwaveTechnol. 19, 1970–1975 (2001) Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. LightwaveTechnol. 19, 1970–1975 (2001)
7.
go back to reference Niemi, T., Frandsen, L.H., Hede, K.K., Harpoth, A., Bore, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Technol. Lett. 18, 226–228 (2006) Niemi, T., Frandsen, L.H., Hede, K.K., Harpoth, A., Bore, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Technol. Lett. 18, 226–228 (2006)
8.
go back to reference Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., et al.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006) Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., et al.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006)
9.
go back to reference Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008) Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008)
10.
go back to reference Khorshid Ahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010) Khorshid Ahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010)
11.
go back to reference Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012) Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012)
12.
go back to reference Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photonics Nanostruct. Fundam. Appl. 5, 164–170 (2007) Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photonics Nanostruct. Fundam. Appl. 5, 164–170 (2007)
13.
go back to reference Kanamori, Y., Takahashi, K., Hane, K.: An ultra-small wavelength selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009) Kanamori, Y., Takahashi, K., Hane, K.: An ultra-small wavelength selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009)
14.
go back to reference Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013) Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)
15.
go back to reference Alipour-Banaei, H., Mehdizadeh, F., HassangholizadehKashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014) Alipour-Banaei, H., Mehdizadeh, F., HassangholizadehKashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014)
17.
go back to reference Rostami, A., Alipour-Banaei, H., Nazari, F., Bahrami, A.: An ultracompact photonic crystal wavelength division demultiplexerusing resonance cavities in a modified Y-branch structure. Optik. Int. J. Light Electron Opt. 122, 1481–1485 (2011) Rostami, A., Alipour-Banaei, H., Nazari, F., Bahrami, A.: An ultracompact photonic crystal wavelength division demultiplexerusing resonance cavities in a modified Y-branch structure. Optik. Int. J. Light Electron Opt. 122, 1481–1485 (2011)
18.
go back to reference Rostami, A., Habibiyan, H., Nazari, F., Bahrami, A., Alipour-Banaei, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. In: Communications and Photonics Conference and Exhibition (ACP). Asia IEEE (2009) Rostami, A., Habibiyan, H., Nazari, F., Bahrami, A., Alipour-Banaei, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. In: Communications and Photonics Conference and Exhibition (ACP). Asia IEEE (2009)
19.
go back to reference Rostami, A., Nazari, F., Alipour-Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010) Rostami, A., Nazari, F., Alipour-Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)
20.
go back to reference Mehdizadeh, F., Soroosh, M.: A new proposal for eight channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31, 65–70 (2016) Mehdizadeh, F., Soroosh, M.: A new proposal for eight channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31, 65–70 (2016)
22.
go back to reference Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124, 5923–5926 (2013) Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124, 5923–5926 (2013)
23.
go back to reference Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124(23), 5964–5967 (2013) Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124(23), 5964–5967 (2013)
24.
go back to reference Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29(2), 146–150 (2015) MATH Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29(2), 146–150 (2015) MATH
26.
go back to reference Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47, 1109–1115 (2015) MATH Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47, 1109–1115 (2015) MATH
27.
go back to reference Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48, 20–28 (2015) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48, 20–28 (2015)
28.
go back to reference Kataz, O., Malka, D.: Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photon. Nanostruct. Fundam. Appl. 25, 9–13 (2017) Kataz, O., Malka, D.: Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photon. Nanostruct. Fundam. Appl. 25, 9–13 (2017)
29.
go back to reference Malka, D., Peled, A.: Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 417, 34–39 (2017) Malka, D., Peled, A.: Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 417, 34–39 (2017)
30.
go back to reference Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofuidic infiltration. Opt. Quant. Electron. 51, 17–31 (2018) Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofuidic infiltration. Opt. Quant. Electron. 51, 17–31 (2018)
31.
go back to reference Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Exp. 14, 7966–7973 (2006) Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Exp. 14, 7966–7973 (2006)
32.
go back to reference Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Optik Int. J. Light Electron Opt. 125, 6520–6523 (2014) Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Optik Int. J. Light Electron Opt. 125, 6520–6523 (2014)
33.
go back to reference Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 83, 101–106 (2016) Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 83, 101–106 (2016)
34.
go back to reference Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 4700311 (2017) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 4700311 (2017)
35.
go back to reference Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47(5), 1109–1115 (2015) MATH Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47(5), 1109–1115 (2015) MATH
36.
go back to reference Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29 (2017) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29 (2017)
39.
go back to reference Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027 (2013) Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027 (2013)
40.
go back to reference Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. PhotonicNetw Commun. 33, 159–165 (2017) Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. PhotonicNetw Commun. 33, 159–165 (2017)
41.
go back to reference Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018) Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018)
42.
go back to reference Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013) Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013)
43.
go back to reference Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324 (2015) Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324 (2015)
44.
go back to reference Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 127, 8706 (2016) Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 127, 8706 (2016)
45.
go back to reference Naghizade, S., Sattari-Esfahlan, S.M.: An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J Opt Commun. 15, 50 (2018) Naghizade, S., Sattari-Esfahlan, S.M.: An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J Opt Commun. 15, 50 (2018)
46.
go back to reference Vogelaar, L.: Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv. Mat. 13, 1551 (2001) Vogelaar, L.: Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv. Mat. 13, 1551 (2001)
47.
go back to reference Li, L., Liu, G.Q., Chen, Y.H., Tang, F.L., Huang, K., Gong, L.X.: Photonic crystal multi-channel drop filters with Fabry-Pérot microcavity reflection feedback. Optik. Int. J. Light Electron Opt. 124, 2608–2611 (2013) Li, L., Liu, G.Q., Chen, Y.H., Tang, F.L., Huang, K., Gong, L.X.: Photonic crystal multi-channel drop filters with Fabry-Pérot microcavity reflection feedback. Optik. Int. J. Light Electron Opt. 124, 2608–2611 (2013)
48.
go back to reference Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001) Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)
49.
go back to reference Taflove, A., Hangess, S.C.: Computational Electrodynamics. The Finite—Difference Time—Domain Method, 3rd edn. Artech House, Norwood (2005) Taflove, A., Hangess, S.C.: Computational Electrodynamics. The Finite—Difference Time—Domain Method, 3rd edn. Artech House, Norwood (2005)
50.
go back to reference Gedney, S.D.: Introduction to finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool, Lexington (2010) MATH Gedney, S.D.: Introduction to finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool, Lexington (2010) MATH
51.
go back to reference Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1999) MathSciNetMATH Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1999) MathSciNetMATH
Metadata
Title
Optical four-channel demultiplexer based on air-bridge structure and graphite-type ring resonators
Authors
Saleh Naghizade
Saber Mohammadi
Publication date
17-06-2020
Publisher
Springer US
Published in
Photonic Network Communications / Issue 1/2020
Print ISSN: 1387-974X
Electronic ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-020-00889-6