Skip to main content
Top
Published in: Experiments in Fluids 2/2020

01-02-2020 | Research Article

Optical measurements of bottom shear stresses by means of ferrofluids

Authors: L. M. Stancanelli, R. E. Musumeci, M. Stagnitti, E. Foti

Published in: Experiments in Fluids | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The research is focused on the development and on the assessment of a measurement technique for bottom shear stresses. In particular, the wall–fluid interaction is analyzed adopting ferrofluids and using an optical readout system. The principle of operation of this technique is based on the capability of ferrofluids to react to external magnetic field changing their shape and their viscosity. The proposed magneto-rheological sensor, consisting in a magnetized drop of ferrofluid located at the channel bottom, is exposed to different flow conditions and its deformations are video-recorded. Thanks to the application of image analyses processes, the relation between shear stresses and magneto-rheological sensor deformation is investigated. The assessment of the measuring technique is carried out in the presence of different sandy bottoms and by considering several hydraulic (steady current) conditions. The range of measured bottom shear stress is 0.01–0.20 N/m\(^2\). Tests carried out with different sandy bottoms characterized by different roughness provide insights about the high sensitivity of the sensor, which is able to detect slight changes in the sandy bottom mixture (less than 10\(\%\) concentration in volume). Statistical analysis on the ferrofluid deformation shows that the sensor deformation is strictly related to the local hydrodynamics. For higher Re number we observed larger mean displacement in the direction of the flow and bigger oscillations. Power spectral densities of the ferrofluid displacement and of the velocity fluctuations measured at the ferrofluid apex point show how the two signals are characterized by the same slope in log–log graph for intermediate and high frequencies (> 0.2 Hz) representative of small-scale eddies.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bagherimiyab F, Lemmin U (2013) Shear velocity estimates in rough-bed open-channel flow. Earth Surf Process Landf 38(14):1714–1724CrossRef Bagherimiyab F, Lemmin U (2013) Shear velocity estimates in rough-bed open-channel flow. Earth Surf Process Landf 38(14):1714–1724CrossRef
go back to reference Coleman NL (1981) Velocity profiles with suspended sediment. J Hydraul Res 19(3):211–229CrossRef Coleman NL (1981) Velocity profiles with suspended sediment. J Hydraul Res 19(3):211–229CrossRef
go back to reference Felderhof B, Kroh H (1999) Hydrodynamics of magnetic and dielectric fluids in interaction with the electromagnetic field. J Chem Phys 110(15):7403–7411CrossRef Felderhof B, Kroh H (1999) Hydrodynamics of magnetic and dielectric fluids in interaction with the electromagnetic field. J Chem Phys 110(15):7403–7411CrossRef
go back to reference Halbreich A, Roger J, Pons J, Geldwerth D, Da Silva M, Roudier M, Bacri J (1998) Biomedical applications of maghemite ferrofluid. Biochimie 80(5–6):379–390CrossRef Halbreich A, Roger J, Pons J, Geldwerth D, Da Silva M, Roudier M, Bacri J (1998) Biomedical applications of maghemite ferrofluid. Biochimie 80(5–6):379–390CrossRef
go back to reference Lyn D (1991) Resistance in flat-bed sediment-laden flows. J Hydraul Eng 117(1):94–114CrossRef Lyn D (1991) Resistance in flat-bed sediment-laden flows. J Hydraul Eng 117(1):94–114CrossRef
go back to reference Manukyan S, Schneider M (2016) Experimental investigation of wetting with magnetic fluids. Langmuir 32(20):5135–5140CrossRef Manukyan S, Schneider M (2016) Experimental investigation of wetting with magnetic fluids. Langmuir 32(20):5135–5140CrossRef
go back to reference McTague JP (1969) Magnetoviscosity of magnetic colloids. J Chem Phys 51(1):133–136CrossRef McTague JP (1969) Magnetoviscosity of magnetic colloids. J Chem Phys 51(1):133–136CrossRef
go back to reference Muste M, Patel V (1997) Velocity profiles for particles and liquid in open-channel flow with suspended sediment. J Hydraul Eng 123(9):742–751CrossRef Muste M, Patel V (1997) Velocity profiles for particles and liquid in open-channel flow with suspended sediment. J Hydraul Eng 123(9):742–751CrossRef
go back to reference Musumeci RE, Marletta V, Sanchez-Arcilla A, Foti E (2018) A ferrofluid-based sensor to measure bottom shear stresses under currents and waves. J Hydraul Eng 56(5):630–647CrossRef Musumeci RE, Marletta V, Sanchez-Arcilla A, Foti E (2018) A ferrofluid-based sensor to measure bottom shear stresses under currents and waves. J Hydraul Eng 56(5):630–647CrossRef
go back to reference Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics Nanofluidics 12(1):1–16MathSciNetCrossRef Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluidics Nanofluidics 12(1):1–16MathSciNetCrossRef
go back to reference Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690CrossRef Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690CrossRef
go back to reference Nikora V, Goring D, McEwan I, Griffiths G (2001) Spatially averaged open-channel flow over rough bed. J Hydraul Eng 127(2):123–133CrossRef Nikora V, Goring D, McEwan I, Griffiths G (2001) Spatially averaged open-channel flow over rough bed. J Hydraul Eng 127(2):123–133CrossRef
go back to reference Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRef Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167CrossRef
go back to reference Patel R, Upadhyay R, Mehta R (2003) Viscosity measurements of a ferrofluid: comparison with various hydrodynamic equations. J Colloid Interface Sci 263(2):661–664CrossRef Patel R, Upadhyay R, Mehta R (2003) Viscosity measurements of a ferrofluid: comparison with various hydrodynamic equations. J Colloid Interface Sci 263(2):661–664CrossRef
go back to reference Rigoni C, Pierno M, Mistura G, Talbot D, Massart R, Bacri JC, Abou-Hassan A (2016) Static magnetowetting of ferrofluid drops. Langmuir 32(30):7639–7646CrossRef Rigoni C, Pierno M, Mistura G, Talbot D, Massart R, Bacri JC, Abou-Hassan A (2016) Static magnetowetting of ferrofluid drops. Langmuir 32(30):7639–7646CrossRef
go back to reference Rowghanian P, Meinhart CD, Campàs O (2016) Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J Fluid Mech 802:245–262MathSciNetCrossRef Rowghanian P, Meinhart CD, Campàs O (2016) Dynamics of ferrofluid drop deformations under spatially uniform magnetic fields. J Fluid Mech 802:245–262MathSciNetCrossRef
go back to reference Schmeeckle MW (2014) Numerical simulation of turbulence and sediment transport of medium sand. J Geophys Res Earth Surf 119(6):1240–1262CrossRef Schmeeckle MW (2014) Numerical simulation of turbulence and sediment transport of medium sand. J Geophys Res Earth Surf 119(6):1240–1262CrossRef
go back to reference Shliomis M (1972) Effective viscosity of magnetic suspensions. Sov J Exp Theor Phys 34(6):1291 Shliomis M (1972) Effective viscosity of magnetic suspensions. Sov J Exp Theor Phys 34(6):1291
go back to reference Solomon BR, Khalil KS, Varanasi KK (2014) Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30(36):10970–10976CrossRef Solomon BR, Khalil KS, Varanasi KK (2014) Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30(36):10970–10976CrossRef
go back to reference Song T, Graf W, Lemmin U (1994) Uniform flow in open channels with movable gravel bed. J Hydraul Eng 32(6):861–876CrossRef Song T, Graf W, Lemmin U (1994) Uniform flow in open channels with movable gravel bed. J Hydraul Eng 32(6):861–876CrossRef
go back to reference Soulsby R, Whitehouse R (1997) Threshold of sediment motion in coastal environments. In: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume 1, Centre for Advanced Engineering, University of Canterbury, p 145 Soulsby R, Whitehouse R (1997) Threshold of sediment motion in coastal environments. In: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference; Volume 1, Centre for Advanced Engineering, University of Canterbury, p 145
go back to reference Tennekes H, Lumley JL, Lumley J et al (1972) A first course in turbulence. MIT Press, CambridgeMATH Tennekes H, Lumley JL, Lumley J et al (1972) A first course in turbulence. MIT Press, CambridgeMATH
go back to reference Torres-Díaz I, Rinaldi C (2014) Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10:8584–8602CrossRef Torres-Díaz I, Rinaldi C (2014) Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10:8584–8602CrossRef
go back to reference Tsai SS, Griffiths IM, Li Z, Kim P, Stone HA (2013) Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment. Soft Matter 9(35):8600–8608CrossRef Tsai SS, Griffiths IM, Li Z, Kim P, Stone HA (2013) Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment. Soft Matter 9(35):8600–8608CrossRef
go back to reference Vinod S, Philip J (2018) Field induced deformation of sessile ferrofluid droplets: effect of particle size distribution on magnetowetting. J Magn Magn Mater 466:295–300CrossRef Vinod S, Philip J (2018) Field induced deformation of sessile ferrofluid droplets: effect of particle size distribution on magnetowetting. J Magn Magn Mater 466:295–300CrossRef
go back to reference Wiberg PL, Rubin DM (1989) Bed roughness produced by saltating sediment. J Geophys Res Oceans 94(C4):5011–5016CrossRef Wiberg PL, Rubin DM (1989) Bed roughness produced by saltating sediment. J Geophys Res Oceans 94(C4):5011–5016CrossRef
go back to reference Yaglom AM (1979) Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu Rev Fluid Mech 11(1):505–540CrossRef Yaglom AM (1979) Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu Rev Fluid Mech 11(1):505–540CrossRef
Metadata
Title
Optical measurements of bottom shear stresses by means of ferrofluids
Authors
L. M. Stancanelli
R. E. Musumeci
M. Stagnitti
E. Foti
Publication date
01-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 2/2020
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-020-2890-3

Other articles of this Issue 2/2020

Experiments in Fluids 2/2020 Go to the issue

Premium Partners