Skip to main content
Top

2024 | OriginalPaper | Chapter

Optimal Algorithms for Numerical Integration: Recent Results and Open Problems

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present recent results on optimal algorithms for numerical integration and several open problems. The paper has six parts:
1.
Introduction
 
2.
Lower Bounds
 
3.
Universality
 
4.
General Domains
 
5.
IID Information
 
6.
Concluding Remarks.
 

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In particular, the optimal order for \(e^\textrm{ran} (A_n, H^{k,{\textrm{mix}}}_d )\), observe that there are no log terms, is a new result of Ullrich [112].
 
Literature
1.
go back to reference Babenko, V.F., Babenko, Y.V., Kovalenko, O.V.: On asymptotically optimal cubatures for multidimensional Sobolev spaces. Res. Math. 29(2), 15–27 (2021) Babenko, V.F., Babenko, Y.V., Kovalenko, O.V.: On asymptotically optimal cubatures for multidimensional Sobolev spaces. Res. Math. 29(2), 15–27 (2021)
2.
go back to reference Bakhvalov, N.S.: On the approximate calculation of multiple integrals. Vestnik MGU, Ser. Math. Mech. Astron. Phys. Chem. 4, 3–18: in Russian. English translation: J. Compl. 31(502–516), 2015 (1959) Bakhvalov, N.S.: On the approximate calculation of multiple integrals. Vestnik MGU, Ser. Math. Mech. Astron. Phys. Chem. 4, 3–18: in Russian. English translation: J. Compl. 31(502–516), 2015 (1959)
3.
go back to reference Bakhvalov, N.S.: An estimate of the mean remainder term in quadrature formulae. Zh. Vych. Mat. 1(1), 64–77 (1961) Bakhvalov, N.S.: An estimate of the mean remainder term in quadrature formulae. Zh. Vych. Mat. 1(1), 64–77 (1961)
4.
go back to reference Bakhvalov, N.S.: On the rate of convergence of indeterministic integration processes within the functional classes \(W^{(l)}_p\). Theor. Probab. Appl. 7, 227 (1962) Bakhvalov, N.S.: On the rate of convergence of indeterministic integration processes within the functional classes \(W^{(l)}_p\). Theor. Probab. Appl. 7, 227 (1962)
5.
go back to reference Berner, J., Grohs, Ph., Kutyniok, G., Petersen, P.H.: The modern mathematics of deep learning. In: Mathematical Aspects of Deep Learning, pp. 1–111, Cambridge University Press (2022). arXiv:2105:04026 Berner, J., Grohs, Ph., Kutyniok, G., Petersen, P.H.: The modern mathematics of deep learning. In: Mathematical Aspects of Deep Learning, pp. 1–111, Cambridge University Press (2022). arXiv:​2105:​04026
6.
go back to reference Bartel, F., Schäfer, M., Ullrich, T.: Constructive subsampling of finite frames with applications in optimal function recovery. Appl. Comput. Harmonic Anal. 65, 209–248 (2023). arXiv:2202.12635 Bartel, F., Schäfer, M., Ullrich, T.: Constructive subsampling of finite frames with applications in optimal function recovery. Appl. Comput. Harmonic Anal. 65, 209–248 (2023). arXiv:​2202.​12635
7.
go back to reference Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (1999)MathSciNetCrossRef Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (1999)MathSciNetCrossRef
8.
go back to reference Brandolini, L., Choirat, C.H.R., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules and distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, 889–923 (2014) Brandolini, L., Choirat, C.H.R., Colzani, L., Gigante, G., Seri, R., Travaglini, G.: Quadrature rules and distribution of points on manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, 889–923 (2014)
9.
go back to reference Chernaya, E.V.: On the optimization of weighted cubature formulae on certain classes of continuous functions. East J. Approx. 1, 47–60 (1995)MathSciNet Chernaya, E.V.: On the optimization of weighted cubature formulae on certain classes of continuous functions. East J. Approx. 1, 47–60 (1995)MathSciNet
10.
go back to reference Clancy, N., Ding, Y., Hamilton, C., Hickernell, F.J., Zhang, Y.: The cost of deterministic, adaptive, automatic algorithms: cones, not balls. J. Complex. 30, 21–45 (2014)MathSciNetCrossRef Clancy, N., Ding, Y., Hamilton, C., Hickernell, F.J., Zhang, Y.: The cost of deterministic, adaptive, automatic algorithms: cones, not balls. J. Complex. 30, 21–45 (2014)MathSciNetCrossRef
11.
go back to reference Cobos, F., Kühn, Th., Sickel, W.: Optimal approximation of multivariate periodic Sobolev functions in the sup-norm. J. Funct. Anal. 270, 4196–4212 (2016)MathSciNetCrossRef Cobos, F., Kühn, Th., Sickel, W.: Optimal approximation of multivariate periodic Sobolev functions in the sup-norm. J. Funct. Anal. 270, 4196–4212 (2016)MathSciNetCrossRef
12.
13.
go back to reference Creutzig, J., Wojtaszczyk, P.: Linear vs. nonlinear algorithms for linear problems. J. Complex. 20, 807–820 (2004) Creutzig, J., Wojtaszczyk, P.: Linear vs. nonlinear algorithms for linear problems. J. Complex. 20, 807–820 (2004)
14.
go back to reference Dick, J.: Numerical integration of Hölder continuous, absolutely convergent Fourier, Fourier cosine, and Walsh series. J. Approx. Th. 183, 14–30 (2014)CrossRef Dick, J.: Numerical integration of Hölder continuous, absolutely convergent Fourier, Fourier cosine, and Walsh series. J. Approx. Th. 183, 14–30 (2014)CrossRef
15.
go back to reference Dick, J., Goda, T.: Stability of lattice rules and polynomial lattice rules constructed by the component-by-component algorithm. J. Comput. Appl. Math. 382, 113062 (2021). arXiv:1912.10651 Dick, J., Goda, T.: Stability of lattice rules and polynomial lattice rules constructed by the component-by-component algorithm. J. Comput. Appl. Math. 382, 113062 (2021). arXiv:​1912.​10651
16.
go back to reference Dick, J., Goda, T., Suzuki, K.: Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate. Math. Comput. 91, 2771–2801 (2022). arXiv:2109.11694 Dick, J., Goda, T., Suzuki, K.: Component-by-component construction of randomized rank-1 lattice rules achieving almost the optimal randomized error rate. Math. Comput. 91, 2771–2801 (2022). arXiv:​2109.​11694
17.
go back to reference Dick, J., Kritzer, P., Pillichshammer, F.: Lattice Rules. Numerical Integration, Approximation, and Discrepancy. Springer Series in Computational Mathematics, vol. 58. Springer (2022) Dick, J., Kritzer, P., Pillichshammer, F.: Lattice Rules. Numerical Integration, Approximation, and Discrepancy. Springer Series in Computational Mathematics, vol. 58. Springer (2022)
18.
go back to reference Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press (2010) Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press (2010)
19.
go back to reference Dick, J., Pillichshammer, F.: Discrepancy theory and quasi-Monte Carlo integration. In: Chen, W., Srivastav, A., Travaglini, G. (eds.), Panorama in Discrepancy Theory. Lecture Notes in Mathematics 2107, pp. 539–619. Springer (2014) Dick, J., Pillichshammer, F.: Discrepancy theory and quasi-Monte Carlo integration. In: Chen, W., Srivastav, A., Travaglini, G. (eds.), Panorama in Discrepancy Theory. Lecture Notes in Mathematics 2107, pp. 539–619. Springer (2014)
20.
go back to reference Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_{2}\). Appl. Comput. Harmonic Anal. 63, 113–134 (2023). arXiv:2204.12621 Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_{2}\). Appl. Comput. Harmonic Anal. 63, 113–134 (2023). arXiv:​2204.​12621
21.
go back to reference Dũng, D., Temlyakov, V.N., Ullrich, T.: Hyperbolic cross approximation. Advanced Courses in Mathematics—CRM Barcelona. Springer International Publishing (2018) Dũng, D., Temlyakov, V.N., Ullrich, T.: Hyperbolic cross approximation. Advanced Courses in Mathematics—CRM Barcelona. Springer International Publishing (2018)
22.
go back to reference Ebert, A., Kritzer, P., Nuyens, D., Osisiogu, O.: Digit-by-digit and component-by-component constructions of lattice rules for periodic functions with unknown smoothness. J. Complex. 66, 101555 (2021)MathSciNetCrossRef Ebert, A., Kritzer, P., Nuyens, D., Osisiogu, O.: Digit-by-digit and component-by-component constructions of lattice rules for periodic functions with unknown smoothness. J. Complex. 66, 101555 (2021)MathSciNetCrossRef
23.
go back to reference Ebert, A., Pillichshammer, F.: Tractability of approximation in the weighted Korobov space in the worst case setting—a complete picture. J. Complex. 67, 101571 (2021)MathSciNetCrossRef Ebert, A., Pillichshammer, F.: Tractability of approximation in the weighted Korobov space in the worst case setting—a complete picture. J. Complex. 67, 101571 (2021)MathSciNetCrossRef
24.
go back to reference Ehler, M., Gräf, M., Oates, C.J.: Optimal Monte Carlo integration on closed manifolds. Stat. Comput. 29, 1203–1214 (2019)MathSciNetCrossRef Ehler, M., Gräf, M., Oates, C.J.: Optimal Monte Carlo integration on closed manifolds. Stat. Comput. 29, 1203–1214 (2019)MathSciNetCrossRef
25.
go back to reference Gnewuch, M., Wnuk, M.: Explicit error bounds for randomized Smolyak algorithms and an application to infinite-dimensional integration. J. Approx. Theory 251, 105342 (2020)MathSciNetCrossRef Gnewuch, M., Wnuk, M.: Explicit error bounds for randomized Smolyak algorithms and an application to infinite-dimensional integration. J. Approx. Theory 251, 105342 (2020)MathSciNetCrossRef
27.
go back to reference Goda, T.: Polynomial tractability for integration in an unweighted function space with absolutely convergent Fourier series. Proc. AMS 151, 3925–3933 (2023). arXiv:2210.06185 Goda, T.: Polynomial tractability for integration in an unweighted function space with absolutely convergent Fourier series. Proc. AMS 151, 3925–3933 (2023). arXiv:​2210.​06185
29.
go back to reference Goda, T., Dick, J.: Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. Found. Comput. Math. 15, 1245–1278. arXiv:1301.6441 Goda, T., Dick, J.: Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. Found. Comput. Math. 15, 1245–1278. arXiv:​1301.​6441
30.
go back to reference Goda, T., L’Ecuyer, P.: Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights. SIAM J. Sci. Comput. 44, A2765–A2788. arXiv:2201.09413 Goda, T., L’Ecuyer, P.: Construction-free median quasi-Monte Carlo rules for function spaces with unspecified smoothness and general weights. SIAM J. Sci. Comput. 44, A2765–A2788. arXiv:​2201.​09413
31.
go back to reference Goda, T., Suzuki, K.: Recent advances in higher order quasi-Monte Carlo methods. In: Discrepancy Theory, De Gruyter, pp. 69–102 (2020) Goda, T., Suzuki, K.: Recent advances in higher order quasi-Monte Carlo methods. In: Discrepancy Theory, De Gruyter, pp. 69–102 (2020)
33.
go back to reference Goda, T., Suzuki, K., Yoshiki, T.: Optimal order quadrature error bounds for infinite-dimensional higher order digital sequences. Found. Comput. Math. 18, 433–458. arXiv:1603.08638 Goda, T., Suzuki, K., Yoshiki, T.: Optimal order quadrature error bounds for infinite-dimensional higher order digital sequences. Found. Comput. Math. 18, 433–458. arXiv:​1603.​08638
35.
go back to reference Heinrich, S.: Randomized approximation of Sobolev embeddings. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 445–459. Springer, Berlin, Heidelberg (2008) Heinrich, S.: Randomized approximation of Sobolev embeddings. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 445–459. Springer, Berlin, Heidelberg (2008)
39.
go back to reference Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the star-discrepancy depends linearly on the dimension. Acta Arithmetica 96, 279–302 (2001)MathSciNetCrossRef Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the star-discrepancy depends linearly on the dimension. Acta Arithmetica 96, 279–302 (2001)MathSciNetCrossRef
40.
go back to reference Hinrichs, A., Krieg, D., Novak, E., Prochno, J., Ullrich, M.: On the power of random information. In: Hickernell, F.J., Kritzer, P. (eds.) Multivariate Algorithms and Information-Based Complexity, pp. 43–64. De Gruyter, Berlin/Boston (2020)CrossRef Hinrichs, A., Krieg, D., Novak, E., Prochno, J., Ullrich, M.: On the power of random information. In: Hickernell, F.J., Kritzer, P. (eds.) Multivariate Algorithms and Information-Based Complexity, pp. 43–64. De Gruyter, Berlin/Boston (2020)CrossRef
41.
go back to reference Hinrichs, A., Krieg, D., Novak, E., Prochno, J., Ullrich, M.: Random sections of ellipsoids and the power of random information. Trans. AMS 374, 8691–8713 (2021)MathSciNetCrossRef Hinrichs, A., Krieg, D., Novak, E., Prochno, J., Ullrich, M.: Random sections of ellipsoids and the power of random information. Trans. AMS 374, 8691–8713 (2021)MathSciNetCrossRef
42.
go back to reference Hinrichs, A., Krieg, D., Novak, E., Vybíral, J.: Lower bounds for the error of quadrature formulas for Hilbert spaces. J. Complex. 65, 101544 (2021)MathSciNetCrossRef Hinrichs, A., Krieg, D., Novak, E., Vybíral, J.: Lower bounds for the error of quadrature formulas for Hilbert spaces. J. Complex. 65, 101544 (2021)MathSciNetCrossRef
43.
go back to reference Hinrichs, A., Krieg, D., Novak, E., Vybíral, J.: Lower bounds for integration and recovery in \(L_2\). spaces. J. Complex. 72, 101662 (2022) Hinrichs, A., Krieg, D., Novak, E., Vybíral, J.: Lower bounds for integration and recovery in \(L_2\). spaces. J. Complex. 72, 101662 (2022)
44.
go back to reference Hinrichs, A., Novak, E., Ullrich, M.: On weak tractability of the Clenshaw Curtis Smolyak algorithm. J. Approx. Theory 183, 31–44 (2014)MathSciNetCrossRef Hinrichs, A., Novak, E., Ullrich, M.: On weak tractability of the Clenshaw Curtis Smolyak algorithm. J. Approx. Theory 183, 31–44 (2014)MathSciNetCrossRef
45.
go back to reference Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality for numerical integration of smooth functions. Math. Comput. 83, 2853–2863 (2014)MathSciNetCrossRef Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality for numerical integration of smooth functions. Math. Comput. 83, 2853–2863 (2014)MathSciNetCrossRef
46.
go back to reference Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality for numerical integration of smooth functions II. J. Complex. 30, 117–143 (2014)MathSciNetCrossRef Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality for numerical integration of smooth functions II. J. Complex. 30, 117–143 (2014)MathSciNetCrossRef
47.
go back to reference Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: Product rules are optimal for numerical integration in classical smoothness spaces. J. Complex. 38, 39–49 (2017)MathSciNetCrossRef Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: Product rules are optimal for numerical integration in classical smoothness spaces. J. Complex. 38, 39–49 (2017)MathSciNetCrossRef
48.
go back to reference Hinrichs, A., Prochno, J., Ullrich, M.: The curse of dimensionality for numerical integration on general domains. J. Complex. 50, 25–42 (2019)MathSciNetCrossRef Hinrichs, A., Prochno, J., Ullrich, M.: The curse of dimensionality for numerical integration on general domains. J. Complex. 50, 25–42 (2019)MathSciNetCrossRef
49.
go back to reference Huber, M., Jones, B.: Faster estimates of the mean of bounded random variables. Math. Comput. Simul. 161, 93–101 (2019)MathSciNetCrossRef Huber, M., Jones, B.: Faster estimates of the mean of bounded random variables. Math. Comput. Simul. 161, 93–101 (2019)MathSciNetCrossRef
50.
go back to reference Kämmerer, L., Ullrich, T., Volkmer, T.: Worst-case recovery guarantees for least squares approximation using random samples. Constr. Approx. 54, 295–352 (2021)MathSciNetCrossRef Kämmerer, L., Ullrich, T., Volkmer, T.: Worst-case recovery guarantees for least squares approximation using random samples. Constr. Approx. 54, 295–352 (2021)MathSciNetCrossRef
51.
go back to reference Krieg, D.: Tensor power sequences and the approximation of tensor product operators. J. Complex. 44, 30–51 (2018)MathSciNetCrossRef Krieg, D.: Tensor power sequences and the approximation of tensor product operators. J. Complex. 44, 30–51 (2018)MathSciNetCrossRef
53.
go back to reference Krieg, D.: Uniform recovery of high dimensional \(C^r\)-functions. J. Complex. 50, 116–126 (2019)CrossRef Krieg, D.: Uniform recovery of high dimensional \(C^r\)-functions. J. Complex. 50, 116–126 (2019)CrossRef
56.
go back to reference Krieg, D., Novak, E.: A universal algorithm for multivariate integration. Found. Comput. Math. 17, 895–916 (2017)MathSciNetCrossRef Krieg, D., Novak, E.: A universal algorithm for multivariate integration. Found. Comput. Math. 17, 895–916 (2017)MathSciNetCrossRef
57.
go back to reference Krieg, D., Novak, E., Sonnleitner, M.: Recovery of Sobolev functions restricted to IID sampling. Math. Comput. 91, 2715–2738 (2022). arXiv:2108.02055 Krieg, D., Novak, E., Sonnleitner, M.: Recovery of Sobolev functions restricted to IID sampling. Math. Comput. 91, 2715–2738 (2022). arXiv:​2108.​02055
58.
go back to reference Krieg, D., Siedlecki, P., Ullrich, M., Woźniakowski, H.: Exponential tractability of \(L_2\)-approximation with function values. Adv. Comput. Math. 49, 18 (2023). arXiv:2205.04141 Krieg, D., Siedlecki, P., Ullrich, M., Woźniakowski, H.: Exponential tractability of \(L_2\)-approximation with function values. Adv. Comput. Math. 49, 18 (2023). arXiv:​2205.​04141
59.
go back to reference Krieg, D., Sonnleitner, M.: Random points are optimal for the approximation of Sobolev functions. IMA J. Num. Anal. 00, 1–26 (2023). arXiv:2009.11275 Krieg, D., Sonnleitner, M.: Random points are optimal for the approximation of Sobolev functions. IMA J. Num. Anal. 00, 1–26 (2023). arXiv:​2009.​11275
61.
go back to reference Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation. Found. Comput. Math. 21, 1141–1151 (2021). arXiv:1905.02516 Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation. Found. Comput. Math. 21, 1141–1151 (2021). arXiv:​1905.​02516
62.
go back to reference Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation: part II. J. Complex. 66, 101569 (2021)CrossRef Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation: part II. J. Complex. 66, 101569 (2021)CrossRef
63.
go back to reference Krieg, D., Vybíral, J.: New lower bounds for the integration of periodic functions. J. Fourier Anal. Appl. 29, 41 (2023). arXiv:2302.02639 Krieg, D., Vybíral, J.: New lower bounds for the integration of periodic functions. J. Fourier Anal. Appl. 29, 41 (2023). arXiv:​2302.​02639
64.
go back to reference Kritzer, P., Kuo, F.Y., Nuyens, D., Ullrich, M.: Lattice rules with random \(n\) achieve nearly the optimal \(\cal{O} (n^{-\alpha -1/2})\) error independently of the dimension. J. Approx. Theory 240, 96–113 (2019)MathSciNetCrossRef Kritzer, P., Kuo, F.Y., Nuyens, D., Ullrich, M.: Lattice rules with random \(n\) achieve nearly the optimal \(\cal{O} (n^{-\alpha -1/2})\) error independently of the dimension. J. Approx. Theory 240, 96–113 (2019)MathSciNetCrossRef
65.
go back to reference Kritzer, P., Woźniakowski, H.: Simple characterizations of exponential tractability for linear multivariate problems. J. Complex. 51, 110–128 (2019)MathSciNetCrossRef Kritzer, P., Woźniakowski, H.: Simple characterizations of exponential tractability for linear multivariate problems. J. Complex. 51, 110–128 (2019)MathSciNetCrossRef
66.
go back to reference Kühn, T., Sickel, W., Ullrich, T.: Approximation numbers of Sobolev embeddings—sharp constants and tractability. J. Complex. 30, 95–116 (2014)MathSciNetCrossRef Kühn, T., Sickel, W., Ullrich, T.: Approximation numbers of Sobolev embeddings—sharp constants and tractability. J. Complex. 30, 95–116 (2014)MathSciNetCrossRef
67.
go back to reference Kühn, T., Sickel, W., Ullrich, T.: Approximation of mixed order Sobolev functions on the \(d\)-torus: asymptotics, preasymptotics, and \(d\)-dependence. Constr. Approx. 42, 353–398 (2015)MathSciNetCrossRef Kühn, T., Sickel, W., Ullrich, T.: Approximation of mixed order Sobolev functions on the \(d\)-torus: asymptotics, preasymptotics, and \(d\)-dependence. Constr. Approx. 42, 353–398 (2015)MathSciNetCrossRef
68.
go back to reference Kunsch, R.J., Novak, E., Rudolf, D.: Solvable integration problems and optimal sample size selection. J. Complex. 53, 40–67 (2019)MathSciNetCrossRef Kunsch, R.J., Novak, E., Rudolf, D.: Solvable integration problems and optimal sample size selection. J. Complex. 53, 40–67 (2019)MathSciNetCrossRef
69.
go back to reference Kunsch, R.J., Rudolf, D.: Optimal confidence for Monte Carlo integration of smooth functions. Adv. Comput. Math. 45, 3095–3122 (2019)MathSciNetCrossRef Kunsch, R.J., Rudolf, D.: Optimal confidence for Monte Carlo integration of smooth functions. Adv. Comput. Math. 45, 3095–3122 (2019)MathSciNetCrossRef
70.
go back to reference Kuo, F.Y., Nuyens, D., Wilkes, L.: Random-prime-fixed-vector randomised lattice-based algorithm for high-dimensional integration. J. Complex. 79, 101785 (2023)MathSciNetCrossRef Kuo, F.Y., Nuyens, D., Wilkes, L.: Random-prime-fixed-vector randomised lattice-based algorithm for high-dimensional integration. J. Complex. 79, 101785 (2023)MathSciNetCrossRef
71.
go back to reference Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer (2014) Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Springer (2014)
72.
go back to reference Lu, Wanting, Wang, H.: On the power of standard information for tractability for \(L_2\)-approximation in the average case setting. J. Complex. 70, 101618 (2022)CrossRef Lu, Wanting, Wang, H.: On the power of standard information for tractability for \(L_2\)-approximation in the average case setting. J. Complex. 70, 101618 (2022)CrossRef
73.
go back to reference Mathé, P.: Random approximation of Sobolev embeddings. J. Complex. 7, 261–281 (1991) Mathé, P.: Random approximation of Sobolev embeddings. J. Complex. 7, 261–281 (1991)
74.
go back to reference Maz’ya, V.G.: Sobolev spaces with applications to elliptic partial differential equations. Grundlehren der Mathematischen Wissenschaften, vol. 342. Springer, Berlin (2011) Maz’ya, V.G.: Sobolev spaces with applications to elliptic partial differential equations. Grundlehren der Mathematischen Wissenschaften, vol. 342. Springer, Berlin (2011)
75.
go back to reference Migliorati, G., Nobile, F.: Stable high-order randomized cubature formulae in arbitrary dimension. J. Approx. Theory 275, 105706 (2022). arXiv:1812.07761 Migliorati, G., Nobile, F.: Stable high-order randomized cubature formulae in arbitrary dimension. J. Approx. Theory 275, 105706 (2022). arXiv:​1812.​07761
76.
go back to reference Müller-Gronbach, T.H., Novak, E., Ritter, K.: Monte-Carlo-Algorithmen. Springer (2012) Müller-Gronbach, T.H., Novak, E., Ritter, K.: Monte-Carlo-Algorithmen. Springer (2012)
77.
go back to reference Nagel, N., Schäfer, M., Ullrich, T.: A new upper bound for sampling numbers. Found. Comput. Math. 22, 445–468 (2020). arXiv:2010.00327 Nagel, N., Schäfer, M., Ullrich, T.: A new upper bound for sampling numbers. Found. Comput. Math. 22, 445–468 (2020). arXiv:​2010.​00327
78.
go back to reference Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2004)MathSciNetCrossRef Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2004)MathSciNetCrossRef
80.
go back to reference Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. Lecture Notes in Mathematics 1349, Springer (1988) Novak, E.: Deterministic and Stochastic Error Bounds in Numerical Analysis. Lecture Notes in Mathematics 1349, Springer (1988)
82.
go back to reference Novak, E.: Intractability results for positive quadrature formulas and extremal problems for trigonometric polynomials. J. Complex. 15, 299–316 (1999)MathSciNetCrossRef Novak, E.: Intractability results for positive quadrature formulas and extremal problems for trigonometric polynomials. J. Complex. 15, 299–316 (1999)MathSciNetCrossRef
83.
go back to reference Novak, E.: Some results on the complexity of numerical integration. In: Cools, R., Nuyens, D. (eds.), Monte Carlo and Quasi-Monte Carlo Methods, p. 163. Springer Proceedings in Mathematics and Statistics (2016) Novak, E.: Some results on the complexity of numerical integration. In: Cools, R., Nuyens, D. (eds.), Monte Carlo and Quasi-Monte Carlo Methods, p. 163. Springer Proceedings in Mathematics and Statistics (2016)
85.
go back to reference Novak, E., Pillichshammer, F.: The curse of dimensionality for the \(L_p\)-discrepancy with finite \(p\). J. Complex. 79, 101760 (2023). arXiv:2303.01787 Novak, E., Pillichshammer, F.: The curse of dimensionality for the \(L_p\)-discrepancy with finite \(p\). J. Complex. 79, 101760 (2023). arXiv:​2303.​01787
86.
go back to reference Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75, 79–97 (1996)MathSciNetCrossRef Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75, 79–97 (1996)MathSciNetCrossRef
87.
go back to reference Novak, E., Ritter, K.: The curse of dimension and a universal method for numerical integration. In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds.), Multivariate Approximation and Splines, pp. 177–188. ISNM 125, Birkhäuser (1997) Novak, E., Ritter, K.: The curse of dimension and a universal method for numerical integration. In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds.), Multivariate Approximation and Splines, pp. 177–188. ISNM 125, Birkhäuser (1997)
88.
go back to reference Novak, E., Ritter, K.: Simple cubature formulas with high polynomial exactness. Constr. Approx. 15, 499–522 (1999)MathSciNetCrossRef Novak, E., Ritter, K.: Simple cubature formulas with high polynomial exactness. Constr. Approx. 15, 499–522 (1999)MathSciNetCrossRef
90.
go back to reference Novak, E., Triebel, H.: Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23, 325–350 (2006)MathSciNetCrossRef Novak, E., Triebel, H.: Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23, 325–350 (2006)MathSciNetCrossRef
91.
go back to reference Novak, E., Ullrich, M., Woźniakowski, H.: Complexity of oscillatory integration for univariate Sobolev spaces. J. Complex. 31, 15–41 (2015)MathSciNetCrossRef Novak, E., Ullrich, M., Woźniakowski, H.: Complexity of oscillatory integration for univariate Sobolev spaces. J. Complex. 31, 15–41 (2015)MathSciNetCrossRef
92.
go back to reference Novak, E., Ullrich, M., Woźniakowski, H., Zhang, S.: Complexity of oscillatory integrals on the real line. Adv. Comput. Math. 43, 537–553 (2017)MathSciNetCrossRef Novak, E., Ullrich, M., Woźniakowski, H., Zhang, S.: Complexity of oscillatory integrals on the real line. Adv. Comput. Math. 43, 537–553 (2017)MathSciNetCrossRef
93.
go back to reference Novak, E., Ullrich, M., Woźniakowski, H., Zhang, S.: Reproducing kernels of Sobolev spaces on \({\mathbb{R}}^d\) and applications to embedding constants and tractability. Anal. Appl. 16, 693–715 (2018) Novak, E., Ullrich, M., Woźniakowski, H., Zhang, S.: Reproducing kernels of Sobolev spaces on \({\mathbb{R}}^d\) and applications to embedding constants and tractability. Anal. Appl. 16, 693–715 (2018)
94.
go back to reference Novak, E., Woźniakowski, H.: Intractability results for integration and discrepancy. J. Complex. 17, 388–441 (2001)MathSciNetCrossRef Novak, E., Woźniakowski, H.: Intractability results for integration and discrepancy. J. Complex. 17, 388–441 (2001)MathSciNetCrossRef
95.
go back to reference Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. European Mathematical Society (2008) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. European Mathematical Society (2008)
96.
go back to reference Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. European Mathematical Society (2010) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. European Mathematical Society (2010)
97.
go back to reference Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume III: Standard Information for Operators. European Mathematical Society (2012) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume III: Standard Information for Operators. European Mathematical Society (2012)
98.
go back to reference Pan, Z., Owen, A.B.: Super-polynomial accuracy of one dimensional randomized nets using the median-of-means. Math. Comput. 92, 805–837 (2023)MathSciNetCrossRef Pan, Z., Owen, A.B.: Super-polynomial accuracy of one dimensional randomized nets using the median-of-means. Math. Comput. 92, 805–837 (2023)MathSciNetCrossRef
99.
go back to reference Plaskota, L.: Automatic integration using asymptotically optimal adaptive Simpson quadrature. Numer. Math. 131, 173–198 (2015)MathSciNetCrossRef Plaskota, L.: Automatic integration using asymptotically optimal adaptive Simpson quadrature. Numer. Math. 131, 173–198 (2015)MathSciNetCrossRef
100.
go back to reference Plaskota, L., Wasilkowski, G.W.: The power of adaptive algorithms for functions with singularities. J. Fixed Point Theory Appl. 6, 227–248 (2009)MathSciNetCrossRef Plaskota, L., Wasilkowski, G.W.: The power of adaptive algorithms for functions with singularities. J. Fixed Point Theory Appl. 6, 227–248 (2009)MathSciNetCrossRef
101.
go back to reference Pozharska, K., Ullrich, T.: A note on sampling recovery of multivariate functions in the uniform norm. SIAM J. Num. Anal. 60, 1363–1384 (2022). arXiv:2103.11124 Pozharska, K., Ullrich, T.: A note on sampling recovery of multivariate functions in the uniform norm. SIAM J. Num. Anal. 60, 1363–1384 (2022). arXiv:​2103.​11124
102.
go back to reference Rudolf, D.: Explicit error bounds for Markov chain Monte Carlo. Dissertationes Mathematicae 485 (2012) Rudolf, D.: Explicit error bounds for Markov chain Monte Carlo. Dissertationes Mathematicae 485 (2012)
103.
go back to reference Shalev-Shwartz, S.H., Ben-David, S.H.: Understanding Machine Learning. Cambridge University Press (2014) Shalev-Shwartz, S.H., Ben-David, S.H.: Understanding Machine Learning. Cambridge University Press (2014)
104.
105.
go back to reference Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008) Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York (2008)
107.
go back to reference Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press (1988) Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press (1988)
108.
go back to reference Traub, J.F., Woźniakowski, H.: A General Theory of Optimal Algorithms. Academic Press (1980) Traub, J.F., Woźniakowski, H.: A General Theory of Optimal Algorithms. Academic Press (1980)
109.
go back to reference Triebel, H.: Function Spaces and Wavelets on Domains. European Mathematical Society (EMS), Zürich (2008)CrossRef Triebel, H.: Function Spaces and Wavelets on Domains. European Mathematical Society (EMS), Zürich (2008)CrossRef
110.
go back to reference Triebel, H.: Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. European Mathematical Society (EMS), Zürich (2010)CrossRef Triebel, H.: Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration. European Mathematical Society (EMS), Zürich (2010)CrossRef
111.
go back to reference Triebel, H.: Function Spaces with Dominating Mixed Smoothness. European Mathematical Society (EMS), Zürich (2019)CrossRef Triebel, H.: Function Spaces with Dominating Mixed Smoothness. European Mathematical Society (EMS), Zürich (2019)CrossRef
112.
go back to reference Ullrich, M.: A Monte Carlo method for integration of multivariate smooth functions. SIAM J. Numer. Anal. 55, 1188–1200 (2017)MathSciNetCrossRef Ullrich, M.: A Monte Carlo method for integration of multivariate smooth functions. SIAM J. Numer. Anal. 55, 1188–1200 (2017)MathSciNetCrossRef
113.
go back to reference Ullrich, M.: On the worst-case error of least squares algorithms for \(L_2\)-approximation with high probability. J. Complex. 60 (2020) Ullrich, M.: On the worst-case error of least squares algorithms for \(L_2\)-approximation with high probability. J. Complex. 60 (2020)
116.
go back to reference Vybíral, J.: Weak and quasi-polynomial tractability of approximation of infinitely differentiable functions. J. Complex. 30, 48–55 (2014)MathSciNetCrossRef Vybíral, J.: Weak and quasi-polynomial tractability of approximation of infinitely differentiable functions. J. Complex. 30, 48–55 (2014)MathSciNetCrossRef
117.
118.
119.
go back to reference Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479 (1912)MathSciNetCrossRef Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441–479 (1912)MathSciNetCrossRef
120.
go back to reference Wu, Z., Graham, I.G., Ma, D., Zhang, Z.: A Filon-Clenshaw-Curtis-Smolyak rule for multi-dimensional oscillatory integrals with application to a UQ problem for the Helmholtz equation. arXiv:2208.10078 Wu, Z., Graham, I.G., Ma, D., Zhang, Z.: A Filon-Clenshaw-Curtis-Smolyak rule for multi-dimensional oscillatory integrals with application to a UQ problem for the Helmholtz equation. arXiv:​2208.​10078
121.
go back to reference Xu, Guiqiao: On weak tractability of the Smolyak algorithm for approximation problems. J. Approx. Theory 192, 347–361 (2015)MathSciNetCrossRef Xu, Guiqiao: On weak tractability of the Smolyak algorithm for approximation problems. J. Approx. Theory 192, 347–361 (2015)MathSciNetCrossRef
122.
go back to reference Zhang, J.: Modern Monte Carlo methods for efficient uncertainty quantification and propagation: a survey. WIREs Comput. Stat. 13, 5, 1939–5108. arXiv:2011.00680 Zhang, J.: Modern Monte Carlo methods for efficient uncertainty quantification and propagation: a survey. WIREs Comput. Stat. 13, 5, 1939–5108. arXiv:​2011.​00680
123.
go back to reference Zhang, S., Novak, E.: Optimal quadrature formulas for the Sobolev space \(H^1\). J. Sci. Comput. 78, 274–289 (2019)MathSciNetCrossRef Zhang, S., Novak, E.: Optimal quadrature formulas for the Sobolev space \(H^1\). J. Sci. Comput. 78, 274–289 (2019)MathSciNetCrossRef
Metadata
Title
Optimal Algorithms for Numerical Integration: Recent Results and Open Problems
Author
Erich Novak
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_5

Premium Partner