Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Optimal Beam Pattern Design

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Beamforming with spherical microphone arrays was presented in Chap. 5 as an instrument to achieve directional filtering, characterized by the beam pattern of the array. It may be desired to control the beam pattern in a more explicit manner to achieve specific properties. For example, beamformers that achieve maximum directivity index may be useful to enhance a desired plane wave relative to undesired plane waves arriving from the entire range of directions. Beamformers that achieve maximum white noise gain (WNG) may be desired if robustness to system uncertainty is important. We may also be interested in enhancing a desired plane wave while guaranteeing a specific reduction level for undesired plane waves in other directions. This can be achieved by restricting the side-lobe level in the beam pattern using the Dolph-Chebyshev design. Design objectives can also be combined into a single objective, or integrated into a more complex constrained optimization formulation. In summary, this chapter presents methods for beam pattern design formulated explicitly for spherical arrays, with the aim of providing tools for matching the properties of the array to specific performance aspects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arfken, G., Weber, H.J.: Mathematical Methods for Physicists, 5th edn. Academic Press, San Diego (2001)MATH Arfken, G., Weber, H.J.: Mathematical Methods for Physicists, 5th edn. Academic Press, San Diego (2001)MATH
2.
go back to reference Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press, Cambridge (1999)CrossRef Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press, Cambridge (1999)CrossRef
3.
go back to reference Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRef Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRef
4.
go back to reference Elko, G.W.: Differential microphone arrays. In: Huang, Y., Benesty, J. (eds.) Audio Signal Processing for Next-Generation Multimedia Communication Systems, pp. 11–89. Kluwer Academic Publishers, Boston (2004)CrossRef Elko, G.W.: Differential microphone arrays. In: Huang, Y., Benesty, J. (eds.) Audio Signal Processing for Next-Generation Multimedia Communication Systems, pp. 11–89. Kluwer Academic Publishers, Boston (2004)CrossRef
5.
go back to reference Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)MATH Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)MATH
6.
go back to reference Huang, Y., Benesty, J. (eds.): Audio Signal Processing for Multimedia Communication Systems. Kluwer Academic Publishers, Boston (2004) Huang, Y., Benesty, J. (eds.): Audio Signal Processing for Multimedia Communication Systems. Kluwer Academic Publishers, Boston (2004)
7.
go back to reference Koretz, A., Rafaely, B.: Dolph-Chebyshev beampattern design for spherical arrays. IEEE Trans. Signal Process. 57(6), 2417–2420 (2009)MathSciNetCrossRef Koretz, A., Rafaely, B.: Dolph-Chebyshev beampattern design for spherical arrays. IEEE Trans. Signal Process. 57(6), 2417–2420 (2009)MathSciNetCrossRef
8.
go back to reference Li, Z., Duraiswami, R.: Flexible and optimal design of spherical microphone arrays for beamforming. IEEE Trans. Audio Speech Lang. Process. 15(2), 702–714 (2007)CrossRef Li, Z., Duraiswami, R.: Flexible and optimal design of spherical microphone arrays for beamforming. IEEE Trans. Audio Speech Lang. Process. 15(2), 702–714 (2007)CrossRef
9.
go back to reference Osnaga, S.M.: On rank one matrices and invariant subspaces. Balk. J. Geom. Appl. 10(1), 145–148 (2005)MathSciNetMATH Osnaga, S.M.: On rank one matrices and invariant subspaces. Balk. J. Geom. Appl. 10(1), 145–148 (2005)MathSciNetMATH
10.
go back to reference Peled, Y., Rafaely, B.: Objective performance analysis of spherical microphone arrays for speech enhancement in rooms. J. Acoust. Soc. Am. 132(3), 1473–1481 (2012)CrossRef Peled, Y., Rafaely, B.: Objective performance analysis of spherical microphone arrays for speech enhancement in rooms. J. Acoust. Soc. Am. 132(3), 1473–1481 (2012)CrossRef
11.
go back to reference Rafaely, B.: Plane-wave decomposition of the pressure on a sphere by spherical convolution. J. Acoust. Soc. Am. 116(4), 2149–2157 (2004)CrossRef Rafaely, B.: Plane-wave decomposition of the pressure on a sphere by spherical convolution. J. Acoust. Soc. Am. 116(4), 2149–2157 (2004)CrossRef
12.
go back to reference Rafaely, B.: Phase-mode versus delay-and-sum spherical microphone array processing. IEEE Signal Process. Lett. 12(10), 713–716 (2005)CrossRef Rafaely, B.: Phase-mode versus delay-and-sum spherical microphone array processing. IEEE Signal Process. Lett. 12(10), 713–716 (2005)CrossRef
13.
go back to reference Sun, H., Yan, S., Svensson, U.P.: Robust minimum sidelobe beamforming for spherical microphone arrays. IEEE Trans. Speech Audio Process. 19(4), 1045–1051 (2011)CrossRef Sun, H., Yan, S., Svensson, U.P.: Robust minimum sidelobe beamforming for spherical microphone arrays. IEEE Trans. Speech Audio Process. 19(4), 1045–1051 (2011)CrossRef
14.
go back to reference Van Trees, H.L.: Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV), 1st edn. Wiley, New York (2002) Van Trees, H.L.: Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV), 1st edn. Wiley, New York (2002)
15.
go back to reference Yan, S., Sun, H., Svensson, U.P., Xiaochuan, M., Hovem, J.M.: Optimal modal beamforming for spherical microphone arrays. IEEE Trans. Speech Audio Process. 19(2), 361–371 (2011)CrossRef Yan, S., Sun, H., Svensson, U.P., Xiaochuan, M., Hovem, J.M.: Optimal modal beamforming for spherical microphone arrays. IEEE Trans. Speech Audio Process. 19(2), 361–371 (2011)CrossRef
Metadata
Title
Optimal Beam Pattern Design
Author
Boaz Rafaely
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-99561-8_6