Abstract
Nowadays, with vast value of expansion in both electric and heat demands, combined heat and power (CHP) system is a preferred solution. Either on the basis of demand commitment or on the vision of greenhouse gas reduction, the combined heat and power systems are effective. Minimizing the total generation cost of both electricity and heat grids, simultaneously, is the objective of researches in hybrid energy systems, and here, the authors use the same objective function. In this regard, heat energy systems are enjoying heat energy storage systems (HESS) as a proper tools in minimizing the total cost more. Heat energy storage system’s role in modern heat systems is undeniable, which having the active HESS units in the system would improve the system operation performance. Considering this, the authors have proposed CHP, HESS coupled to the system to model the heat and electricity systems simultaneously in the current work. To be more realistic, the heat pipelines are taking into account in the heat system model. Furthermore, combined heat and power (CHP) systems are kind of proper heat generation units to commit heat and electric loads at the same time. Using CHP systems, not only we could provide heat demands with a higher reliability, but also we could have a surplus electricity generation supply. The HESS units could do various functions in the system in which at this work it would be to compensate the heat generation.