Skip to main content
Top

2023 | OriginalPaper | Chapter

20. Optimal Kernel Design for the Extraction of Subtle Motions Using Convolutional Neural Network

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The phase-based motion magnification, which decomposes video frames into a set of kernels, is a recent video processing technique that has been developed to perceive the undetectable subtle motions in videos within a specific frequency range. However, the parameter determination in designing the optimal kernel characteristics for video motion magnification is challenging, which needs to be addressed, in terms of the center frequency and bandwidth, especially when the structure is geometrically complex and the structural vibration modes are not well separated in the frequency domain. Their decomposition usually is determined by handcrafted designed kernels, such as the complex steerable pyramids, and Gabor wavelets, typically may not be optimally designed kernels for the extraction of subtle motions in a specific scenario. In this paper, optimal decomposition kernel is learned and designed directly from baseline dataset images acquired from existing videos using deep convolutional neural networks (CNNs) approach. Many of these responses resemble Gabor wavelet filters and Laplacian filters, which suggests that the proposed deep network learns to extract similar information as done by the complex steerable filters. By contrast, the texture kernel responses show many blurring kernels.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schmidt, T., Tyson, J., Galanulis, K.: Full-field dynamic displacement and strain measurement-specific examples using advanced 3D image correlation. Photogrammetry: Part II. Exp. Tech. 27(4), 22–26 (2003)CrossRef Schmidt, T., Tyson, J., Galanulis, K.: Full-field dynamic displacement and strain measurement-specific examples using advanced 3D image correlation. Photogrammetry: Part II. Exp. Tech. 27(4), 22–26 (2003)CrossRef
2.
go back to reference Southwick, M., Mao, Z., Niezrecki, C.: A complex convolution kernel-based optical displacement sensor. IEEE Sens. J. 20(17), 9753–9762 (2020)CrossRef Southwick, M., Mao, Z., Niezrecki, C.: A complex convolution kernel-based optical displacement sensor. IEEE Sens. J. 20(17), 9753–9762 (2020)CrossRef
3.
go back to reference Dizaji, M., Alipour, M., Harris, D.: Subsurface damage detection and structural health monitoring using digital image correlation and topology optimization. Eng. Struct. 230, 111712 (2021)CrossRef Dizaji, M., Alipour, M., Harris, D.: Subsurface damage detection and structural health monitoring using digital image correlation and topology optimization. Eng. Struct. 230, 111712 (2021)CrossRef
4.
go back to reference Dizaji, M.S., Alipour, M., Harris, D.: Image-based tomography of structures to detect internal abnormalities using inverse approach. Exp. Tech. 46(2), 257–272 (2020)CrossRef Dizaji, M.S., Alipour, M., Harris, D.: Image-based tomography of structures to detect internal abnormalities using inverse approach. Exp. Tech. 46(2), 257–272 (2020)CrossRef
5.
go back to reference Dizaji, M.S., Alipour, M., Harris, D.: Leveraging full-field measurement from 3D digital image correlation for structural identification. Exp. Mech. 58(7), 1049–1066 (2018)CrossRef Dizaji, M.S., Alipour, M., Harris, D.: Leveraging full-field measurement from 3D digital image correlation for structural identification. Exp. Mech. 58(7), 1049–1066 (2018)CrossRef
6.
go back to reference Dizaji, M.S., et al.: Reframing measurement for structural health monitoring: a full-field strategy for structural identification. In: Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XII. International Society for Optics and Photonics (2018) Dizaji, M.S., et al.: Reframing measurement for structural health monitoring: a full-field strategy for structural identification. In: Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XII. International Society for Optics and Photonics (2018)
8.
go back to reference Ketkar, N.: Convolutional neural networks. In: Deep learning with Python, pp. 63–78. Springer (2017)CrossRef Ketkar, N.: Convolutional neural networks. In: Deep learning with Python, pp. 63–78. Springer (2017)CrossRef
9.
go back to reference Atha, D.J., Jahanshahi, M.R.: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 17(5), 1110–1128 (2018)CrossRef Atha, D.J., Jahanshahi, M.R.: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct. Health Monit. 17(5), 1110–1128 (2018)CrossRef
10.
go back to reference Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrastruct. Eng. 32(5), 361–378 (2017)CrossRef Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrastruct. Eng. 32(5), 361–378 (2017)CrossRef
11.
go back to reference Koushik, J.: Understanding convolutional neural networks. arXiv preprint arXiv:1605.09081 (2016) Koushik, J.: Understanding convolutional neural networks. arXiv preprint arXiv:1605.09081 (2016)
12.
go back to reference O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015) O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)
13.
go back to reference Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on multimedia (2015) Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of the 23rd ACM international conference on multimedia (2015)
14.
go back to reference Dizaji, M.S., Harris, D.K.: 3D InspectionNet: a deep 3D convolutional neural networks based approach for 3D defect detection on concrete columns. In: Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XIII. International Society for Optics and Photonics (2019) Dizaji, M.S., Harris, D.K.: 3D InspectionNet: a deep 3D convolutional neural networks based approach for 3D defect detection on concrete columns. In: Nondestructive characterization and monitoring of advanced materials, aerospace, civil infrastructure, and transportation XIII. International Society for Optics and Photonics (2019)
15.
go back to reference Sarrafi, A., et al.: Vibration-based damage detection in wind turbine blades using phase-based motion estimation and motion magnification. J. Sound Vib. 421, 300–318 (2018)CrossRef Sarrafi, A., et al.: Vibration-based damage detection in wind turbine blades using phase-based motion estimation and motion magnification. J. Sound Vib. 421, 300–318 (2018)CrossRef
Metadata
Title
Optimal Kernel Design for the Extraction of Subtle Motions Using Convolutional Neural Network
Authors
Mehrdad Shafiei Dizaji
Zhu Mao
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-04098-6_20

Premium Partners