Skip to main content
Top
Published in:

08-01-2019

Optimal Landmark Point Selection Using Clustering for Manifold Modeling and Data Classification

Authors: Manazhy Rashmi, Praveen Sankaran

Published in: Journal of Classification | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As data volume and dimensions continue to grow, effective and efficient methods are needed to obtain the low dimensional features of the data that describe its true structure. Most nonlinear dimensionality reduction methods (NLDR) utilize the Euclidean distance between the data points to form a general idea of the data manifold structure. Isomap uses the geodesic distance between data points and then uses classical multidimensional scaling(cMDS) to obtain low dimensional features. As the data size increases Isomap becomes complex. To overcome this disadvantage, Landmark Isomap (L-Isomap) uses selected data points called landmark points and finds the geodesic distance from these points to all other non-landmark points. Traditionally, landmark points are randomly selected without considering any statistical property of the data manifold. We contend that the quality of the features extracted is dependent on the selection of the landmark points. In applications such as data classification, the net accuracy is dependent on the quality of the features selected, and hence landmark points selection might play a crucial role. In this paper, we propose a clustering approach to obtain the landmark points. These new points are now used to represent the data, and Fisher’s linear discriminants are used for classification. The proposed method is tested with different datasets to verify the efficacy of the approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Optimal Landmark Point Selection Using Clustering for Manifold Modeling and Data Classification
Authors
Manazhy Rashmi
Praveen Sankaran
Publication date
08-01-2019
Publisher
Springer US
Published in
Journal of Classification / Issue 1/2019
Print ISSN: 0176-4268
Electronic ISSN: 1432-1343
DOI
https://doi.org/10.1007/s00357-018-9285-7

Premium Partner