Skip to main content
Top

2025 | OriginalPaper | Chapter

Optimal Modeling of Deep Groove Ball Bearings for Application in Multibody Dynamics Simulations

Authors : Josef Koutsoupakis, Dimitrios Giagopoulos

Published in: Data Science in Engineering Vol. 10

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, optimal modeling of deep groove ball bearings is examined for application in multibody dynamics simulations. First, the equations for the normal contact force between the rolling elements and the two bearing races are established, including the effects of raceway surface roughness. Various contact force models with different hysteresis damping formulations are examined in order to select the best suited for the application. The bearing contact force model is then used in a multibody dynamics simulation of a bearing test-rig, aiming to estimate the model’s optimal parameters resulting in a good approximation of the system’s behavior and, finally, to a well-calibrated ready-to-use bearing model. The optimal model is then used to examine the system’s behavior in the presence of defects in the bearings, validating the robustness and performance of the optimized deep groove ball bearing model. The system’s response is examined by means of signal analysis as well as by using deep learning methods in order to characterize the health state of the system, thus proving the applicability of the present bearing modeling method for condition monitoring applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Praveen, H.M., Sabareesh, G.R.: Vamsi Inturi, Akshay Jaikanth, component level signal segmentation method for multi-component fault detection in a wind turbine gearbox. Measurement. 195, 111180 (2022)CrossRef Praveen, H.M., Sabareesh, G.R.: Vamsi Inturi, Akshay Jaikanth, component level signal segmentation method for multi-component fault detection in a wind turbine gearbox. Measurement. 195, 111180 (2022)CrossRef
2.
go back to reference Zhu, Y., Zhu, C., Tan, J., Song, C., Chen, D., Zheng, J.: Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion. Renew. Energy. 200, 1023 (2022)CrossRef Zhu, Y., Zhu, C., Tan, J., Song, C., Chen, D., Zheng, J.: Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion. Renew. Energy. 200, 1023 (2022)CrossRef
3.
go back to reference Elasha, F., Greaves, M., Mba, D.: Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission. Struct. Health Monit. 17(5), 1192–1212 (2018)CrossRef Elasha, F., Greaves, M., Mba, D.: Planetary bearing defect detection in a commercial helicopter main gearbox with vibration and acoustic emission. Struct. Health Monit. 17(5), 1192–1212 (2018)CrossRef
4.
go back to reference Perez-Sanjines, F., Peeters, C., Verstraeten, T., Antoni, J., Nowé, A., Helsen, J.: Fleet-based early fault detection of wind turbine gearboxes using physics-informed deep learning based on cyclic spectral coherence. Mech. Syst. Signal Process. 185, 109760 (2023)CrossRef Perez-Sanjines, F., Peeters, C., Verstraeten, T., Antoni, J., Nowé, A., Helsen, J.: Fleet-based early fault detection of wind turbine gearboxes using physics-informed deep learning based on cyclic spectral coherence. Mech. Syst. Signal Process. 185, 109760 (2023)CrossRef
5.
go back to reference de Paula, R., Monteiro, M.C., Lozada, D.R., Mendieta, C., Sánchez Loja, R.V., Bastos Filho, C.J.A.: A hybrid prototype selection-based deep learning approach for anomaly detection in industrial machines. Expert Syst. Appl. 204, 117528 (2022)CrossRef de Paula, R., Monteiro, M.C., Lozada, D.R., Mendieta, C., Sánchez Loja, R.V., Bastos Filho, C.J.A.: A hybrid prototype selection-based deep learning approach for anomaly detection in industrial machines. Expert Syst. Appl. 204, 117528 (2022)CrossRef
6.
go back to reference Seventekidis, P., Giagopoulos, D., Arailopoulos, A., Markogiannaki, O.: Structural Health Monitoring using deep learning with optimal finite element model generated data. Mech. Syst. Signal Process. 145 (2020) Seventekidis, P., Giagopoulos, D., Arailopoulos, A., Markogiannaki, O.: Structural Health Monitoring using deep learning with optimal finite element model generated data. Mech. Syst. Signal Process. 145 (2020)
7.
go back to reference Koutsoupakis, J., Seventekidis, P., Giagopoulos, D. (2022). Machine Learning-Based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults. Data Science in Engineering, Volume 9 (pp. 51–59). Springer International Publishing Koutsoupakis, J., Seventekidis, P., Giagopoulos, D. (2022). Machine Learning-Based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults. Data Science in Engineering, Volume 9 (pp. 51–59). Springer International Publishing
13.
go back to reference Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mech. Mach. Theory. 53, 99–121 (2012)CrossRef Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mech. Mach. Theory. 53, 99–121 (2012)CrossRef
14.
go back to reference da Silva, M.R., Marques, F., da Silva, M.T., Flores, P.: A compendium of contact force models inspired by Hunt and Crossley’s cornerstone work. Mech. Mach. Theory. 167, 104501 (2022)CrossRef da Silva, M.R., Marques, F., da Silva, M.T., Flores, P.: A compendium of contact force models inspired by Hunt and Crossley’s cornerstone work. Mech. Mach. Theory. 167, 104501 (2022)CrossRef
15.
go back to reference Giagopoulos, D., Arailopoulos, A.: Computational framework for model updating of large scale linear and nonlinear finite element models using state of the art evolution strategy. Comput. Struct. 192, 210–232 (2017)CrossRef Giagopoulos, D., Arailopoulos, A.: Computational framework for model updating of large scale linear and nonlinear finite element models using state of the art evolution strategy. Comput. Struct. 192, 210–232 (2017)CrossRef
16.
go back to reference Giagopoulos, D., Arailopoulos, Α., Natsiavas, S.: A model-based fatigue damage estimation framework of large scale structural systems. Struct. Health Monit. (SHM)., Article in Press. 20, 834 (2019)CrossRef Giagopoulos, D., Arailopoulos, Α., Natsiavas, S.: A model-based fatigue damage estimation framework of large scale structural systems. Struct. Health Monit. (SHM)., Article in Press. 20, 834 (2019)CrossRef
17.
go back to reference Sobie, C., Freitas, C., Nicolai, M.: Simulation-driven machine learning: Bearing fault classification. Mech. Syst. Signal Process. 99, 403–419 (2018)CrossRef Sobie, C., Freitas, C., Nicolai, M.: Simulation-driven machine learning: Bearing fault classification. Mech. Syst. Signal Process. 99, 403–419 (2018)CrossRef
Metadata
Title
Optimal Modeling of Deep Groove Ball Bearings for Application in Multibody Dynamics Simulations
Authors
Josef Koutsoupakis
Dimitrios Giagopoulos
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-68142-4_5