Skip to main content
Top
Published in: Journal of Computational Neuroscience 1/2017

06-10-2016

Optimal nonlinear cue integration for sound localization

Authors: Brian J. Fischer, Jose Luis Peña

Published in: Journal of Computational Neuroscience | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Integration of multiple sensory cues can improve performance in detection and estimation tasks. There is an open theoretical question of the conditions under which linear or nonlinear cue combination is Bayes-optimal. We demonstrate that a neural population decoded by a population vector requires nonlinear cue combination to approximate Bayesian inference. Specifically, if cues are conditionally independent, multiplicative cue combination is optimal for the population vector. The model was tested on neural and behavioral responses in the barn owl’s sound localization system where space-specific neurons owe their selectivity to multiplicative tuning to sound localization cues interaural phase (IPD) and level (ILD) differences. We found that IPD and ILD cues are approximately conditionally independent. As a result, the multiplicative combination selectivity to IPD and ILD of midbrain space-specific neurons permits a population vector to perform Bayesian cue combination. We further show that this model describes the owl’s localization behavior in azimuth and elevation. This work provides theoretical justification and experimental evidence supporting the optimality of nonlinear cue combination.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.CrossRefPubMed Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.CrossRefPubMed
go back to reference Albeck, Y., & Konishi, M. (1995). Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals. Journal of Neurophysiology, 74, 1689–1700.PubMed Albeck, Y., & Konishi, M. (1995). Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals. Journal of Neurophysiology, 74, 1689–1700.PubMed
go back to reference Angelaki, D. E., Gu, Y., & DeAngelis, G. C. (2009). Multisensory integration: psychophysics, neurophysiology, and computation. Current Opinion in Neurobiology, 19, 452–458.CrossRefPubMedPubMedCentral Angelaki, D. E., Gu, Y., & DeAngelis, G. C. (2009). Multisensory integration: psychophysics, neurophysiology, and computation. Current Opinion in Neurobiology, 19, 452–458.CrossRefPubMedPubMedCentral
go back to reference Bala, A. D. S., Spitzer, M. W., & Takahashi, T. T. (2007). Auditory spatial acuity approximates the resolving power of space-specific neurons. PLoS ONE, 2, e675.CrossRefPubMedPubMedCentral Bala, A. D. S., Spitzer, M. W., & Takahashi, T. T. (2007). Auditory spatial acuity approximates the resolving power of space-specific neurons. PLoS ONE, 2, e675.CrossRefPubMedPubMedCentral
go back to reference Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A, 20, 1391–1397.CrossRef Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Journal of the Optical Society of America A, 20, 1391–1397.CrossRef
go back to reference Beck, J., Ma, W. J., Latham, P. E., & Pouget, A. (2007). Probabilistic population codes and the exponential family of distributions. Progress in Brain Research, 165, 509–519.CrossRefPubMed Beck, J., Ma, W. J., Latham, P. E., & Pouget, A. (2007). Probabilistic population codes and the exponential family of distributions. Progress in Brain Research, 165, 509–519.CrossRefPubMed
go back to reference Beck, J. M., Latham, P. E., & Pouget, A. (2011). Marginalization in neural circuits with divisive normalization. Journal of Neuroscience, 31, 15310–15319.CrossRefPubMedPubMedCentral Beck, J. M., Latham, P. E., & Pouget, A. (2011). Marginalization in neural circuits with divisive normalization. Journal of Neuroscience, 31, 15310–15319.CrossRefPubMedPubMedCentral
go back to reference Brainard, M. S., & Knudsen, E. I. (1993). Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. Journal of Neuroscience, 13, 4589–4608.PubMed Brainard, M. S., & Knudsen, E. I. (1993). Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. Journal of Neuroscience, 13, 4589–4608.PubMed
go back to reference Brainard, M. S., Knudsen, E. I., & Esterly, S. D. (1992). Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. Journal of the Acoustical Society of America, 91, 1015–1027.CrossRefPubMed Brainard, M. S., Knudsen, E. I., & Esterly, S. D. (1992). Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. Journal of the Acoustical Society of America, 91, 1015–1027.CrossRefPubMed
go back to reference Bregman AS (1994) Auditory scene analysis: The perceptual organization of sound. Cambridge, MA.: MIT press. Bregman AS (1994) Auditory scene analysis: The perceptual organization of sound. Cambridge, MA.: MIT press.
go back to reference Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience, 10, 3227–3246.PubMed Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience, 10, 3227–3246.PubMed
go back to reference Cazettes, F., Fischer, B. J., & Peña, J. L. (2016). Cue reliability represented in the shape of tuning curves in the owl’s sound localization system. Journal of Neuroscience, 36, 2101–2110.CrossRefPubMedPubMedCentral Cazettes, F., Fischer, B. J., & Peña, J. L. (2016). Cue reliability represented in the shape of tuning curves in the owl’s sound localization system. Journal of Neuroscience, 36, 2101–2110.CrossRefPubMedPubMedCentral
go back to reference Christianson, G. B., & Peña, J. L. (2006). Noise reduction of coincidence detector output by the inferior colliculus of the barn owl. Journal of Neuroscience, 26, 5948–5954.CrossRefPubMedPubMedCentral Christianson, G. B., & Peña, J. L. (2006). Noise reduction of coincidence detector output by the inferior colliculus of the barn owl. Journal of Neuroscience, 26, 5948–5954.CrossRefPubMedPubMedCentral
go back to reference Edut, S., & Eilam, D. (2004). Protean behavior under barn-owl attack: voles alternate between freezing and fleeing and spiny mice flee in alternating patterns. Behavioural Brain Research, 155, 207–216.CrossRefPubMed Edut, S., & Eilam, D. (2004). Protean behavior under barn-owl attack: voles alternate between freezing and fleeing and spiny mice flee in alternating patterns. Behavioural Brain Research, 155, 207–216.CrossRefPubMed
go back to reference Egnor, R. S. (2001). Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba). Journal of Comparative Physiology A, 187, 589–595.CrossRef Egnor, R. S. (2001). Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba). Journal of Comparative Physiology A, 187, 589–595.CrossRef
go back to reference Eliasmith C., & Anderson C.H. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT Press. Eliasmith C., & Anderson C.H. (2004). Neural engineering: Computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT Press.
go back to reference Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.CrossRefPubMed Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415, 429–433.CrossRefPubMed
go back to reference Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2011). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15, 146–154.CrossRefPubMedPubMedCentral Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2011). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15, 146–154.CrossRefPubMedPubMedCentral
go back to reference Fischer, B. J., & Konishi, M. (2008). Variability reduction in interaural time difference tuning in the barn owl. Journal of Neurophysiology, 100, 708–715.CrossRefPubMedPubMedCentral Fischer, B. J., & Konishi, M. (2008). Variability reduction in interaural time difference tuning in the barn owl. Journal of Neurophysiology, 100, 708–715.CrossRefPubMedPubMedCentral
go back to reference Fischer, B. J., & Peña, J. L. (2011). Owl’s behavior and neural representation predicted by Bayesian inference. Nature Neuroscience, 14, 1061–1066.CrossRefPubMedPubMedCentral Fischer, B. J., & Peña, J. L. (2011). Owl’s behavior and neural representation predicted by Bayesian inference. Nature Neuroscience, 14, 1061–1066.CrossRefPubMedPubMedCentral
go back to reference Fischer, B. J., Peña, J. L., & Konishi, M. (2007). Emergence of multiplicative auditory responses in the midbrain of the barn owl. Journal of Neurophysiology, 98, 1181–1193.CrossRefPubMedPubMedCentral Fischer, B. J., Peña, J. L., & Konishi, M. (2007). Emergence of multiplicative auditory responses in the midbrain of the barn owl. Journal of Neurophysiology, 98, 1181–1193.CrossRefPubMedPubMedCentral
go back to reference Fischer, B. J., Anderson, C. H., & Peña, J. L. (2009). Multiplicative auditory spatial receptive fields created by a hierarchy of population codes. PLoS One, 4, e8015.CrossRefPubMedPubMedCentral Fischer, B. J., Anderson, C. H., & Peña, J. L. (2009). Multiplicative auditory spatial receptive fields created by a hierarchy of population codes. PLoS One, 4, e8015.CrossRefPubMedPubMedCentral
go back to reference Fux, M., & Eilam, D. (2009a). How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them. Physiology and Behavior, 98, 359–366.CrossRefPubMed Fux, M., & Eilam, D. (2009a). How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them. Physiology and Behavior, 98, 359–366.CrossRefPubMed
go back to reference Fux, M., & Eilam, D. (2009b). The trigger for barn owl (Tyto alba) attack is the onset of stopping or progressing of the prey. Behavioural Processes, 81, 140–143.CrossRefPubMed Fux, M., & Eilam, D. (2009b). The trigger for barn owl (Tyto alba) attack is the onset of stopping or progressing of the prey. Behavioural Processes, 81, 140–143.CrossRefPubMed
go back to reference Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience, 14, 926–932.CrossRefPubMedPubMedCentral Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience, 14, 926–932.CrossRefPubMedPubMedCentral
go back to reference Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Science, 5, 10–16.CrossRef Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Science, 5, 10–16.CrossRef
go back to reference Gu, Y., Angelaki, D. E., & DeAngelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience, 11, 1201–1210.CrossRefPubMedPubMedCentral Gu, Y., Angelaki, D. E., & DeAngelis, G. C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience, 11, 1201–1210.CrossRefPubMedPubMedCentral
go back to reference Hillis, J. M., Watt, S. J., Landy, M. S., & Banks, M. S. (2004). Slant from texture and disparity cues: optimal cue combination. Journal of Vision, 4, 1.CrossRef Hillis, J. M., Watt, S. J., Landy, M. S., & Banks, M. S. (2004). Slant from texture and disparity cues: optimal cue combination. Journal of Vision, 4, 1.CrossRef
go back to reference Hollensteiner, K. J., Pieper, F., Engler, G., König, P., & Engel, A. K. (2015). Crossmodal integration improves sensory detection thresholds in the ferret. PLoS One, 10, e0124952.CrossRefPubMedPubMedCentral Hollensteiner, K. J., Pieper, F., Engler, G., König, P., & Engel, A. K. (2015). Crossmodal integration improves sensory detection thresholds in the ferret. PLoS One, 10, e0124952.CrossRefPubMedPubMedCentral
go back to reference Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 39, 3621–3629.CrossRefPubMed Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 39, 3621–3629.CrossRefPubMed
go back to reference Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neural populations. Nature Neuroscience, 9, 690–696.CrossRefPubMed Jazayeri, M., & Movshon, J. A. (2006). Optimal representation of sensory information by neural populations. Nature Neuroscience, 9, 690–696.CrossRefPubMed
go back to reference Jeffress, L. A., Blodgett, H. C., & Deatherage, B. H. (1962). Effect of interaural correlation on the precision of centering a noise. Journal of the Acoustical Society of America, 34, 1122–1123.CrossRef Jeffress, L. A., Blodgett, H. C., & Deatherage, B. H. (1962). Effect of interaural correlation on the precision of centering a noise. Journal of the Acoustical Society of America, 34, 1122–1123.CrossRef
go back to reference Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America, 68, 1115–1122.CrossRefPubMed Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America, 68, 1115–1122.CrossRefPubMed
go back to reference Keller, C. H., Hartung, K., & Takahashi, T. T. (1998). Head-related transfer functions of the barn owl: measurement and neural responses. Hearing Research, 118, 13–34.CrossRefPubMed Keller, C. H., Hartung, K., & Takahashi, T. T. (1998). Head-related transfer functions of the barn owl: measurement and neural responses. Hearing Research, 118, 13–34.CrossRefPubMed
go back to reference Kita, H. & Armstrong, W. (1991). A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. Journal of Neuroscience Methods, 37, 141–150. Kita, H. & Armstrong, W. (1991). A biotin-containing compound N-(2-aminoethyl)biotinamide for intracellular labeling and neuronal tracing studies: comparison with biocytin. Journal of Neuroscience Methods, 37, 141–150.
go back to reference Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27, 712–719.CrossRefPubMed Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27, 712–719.CrossRefPubMed
go back to reference Knudsen, E. I. (1982). Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience, 2, 1177–1194.PubMed Knudsen, E. I. (1982). Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience, 2, 1177–1194.PubMed
go back to reference Knudsen, E. I. (1983). Subdivisions of the inferior colliculus in the barn owl (Tyto alba). Journal of Comparative Neurology, 218, 174–186.CrossRefPubMed Knudsen, E. I. (1983). Subdivisions of the inferior colliculus in the barn owl (Tyto alba). Journal of Comparative Neurology, 218, 174–186.CrossRefPubMed
go back to reference Knudsen, E. I., & Konishi, M. (1978). A neural map of auditory space in the owl. Science, 200, 795–797.CrossRefPubMed Knudsen, E. I., & Konishi, M. (1978). A neural map of auditory space in the owl. Science, 200, 795–797.CrossRefPubMed
go back to reference Knudsen, E. I., & Konishi, M. (1979). Mechanisms of sound localization in the barn owl (Tyto alba). Journal of Comparative Physiology, 133, 13–21.CrossRef Knudsen, E. I., & Konishi, M. (1979). Mechanisms of sound localization in the barn owl (Tyto alba). Journal of Comparative Physiology, 133, 13–21.CrossRef
go back to reference Knudsen, E. I., Konishi, M., & Pettigrew, J. D. (1977). Receptive fields of auditory neurons in the owl. Science, 198, 1278–1280.CrossRefPubMed Knudsen, E. I., Konishi, M., & Pettigrew, J. D. (1977). Receptive fields of auditory neurons in the owl. Science, 198, 1278–1280.CrossRefPubMed
go back to reference Knudsen, E. I., Blasdel, G. G., & Konishi, M. (1979). Sound localization by the barn owl (Tyto alba) measured with the search coil technique. Journal of Comparative Physiology, 133, 1–11.CrossRef Knudsen, E. I., Blasdel, G. G., & Konishi, M. (1979). Sound localization by the barn owl (Tyto alba) measured with the search coil technique. Journal of Comparative Physiology, 133, 1–11.CrossRef
go back to reference Koch, C. (2004). Biophysics of computation: information processing in single neurons. USA: Oxford University Press. Koch, C. (2004). Biophysics of computation: information processing in single neurons. USA: Oxford University Press.
go back to reference Konishi, M. (1993). Neuroethology of sound localization in the owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 173, 3–7.CrossRef Konishi, M. (1993). Neuroethology of sound localization in the owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 173, 3–7.CrossRef
go back to reference Köppl, C. (1997a). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. Journal of Neuroscience, 17, 3312–3321.PubMed Köppl, C. (1997a). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. Journal of Neuroscience, 17, 3312–3321.PubMed
go back to reference Köppl, C. (1997b). Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. Journal of Neurophysiology, 77, 364–377. Köppl, C. (1997b). Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. Journal of Neurophysiology, 77, 364–377.
go back to reference Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.CrossRef Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.CrossRef
go back to reference Landy, M. S., & Kojima, H. (2001). Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A, 18, 2307.CrossRef Landy, M. S., & Kojima, H. (2001). Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A, 18, 2307.CrossRef
go back to reference Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research, 35, 389–412.CrossRefPubMed Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. (1995). Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research, 35, 389–412.CrossRefPubMed
go back to reference Landy MS, Banks MS, Knill DC (2011) Ideal-observer models of cue integration. Sensory Cue Integration: 5–29. Landy MS, Banks MS, Knill DC (2011) Ideal-observer models of cue integration. Sensory Cue Integration: 5–29.
go back to reference Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9, 1432–1438.CrossRefPubMed Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9, 1432–1438.CrossRefPubMed
go back to reference Manley, G. A., Koppl, C., & Konishi, M. (1988). A neural map of interaural intensity differences in the brain stem of the barn owl. Journal of Neuroscience, 8, 2665–2676.PubMed Manley, G. A., Koppl, C., & Konishi, M. (1988). A neural map of interaural intensity differences in the brain stem of the barn owl. Journal of Neuroscience, 8, 2665–2676.PubMed
go back to reference Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.CrossRefPubMed Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.CrossRefPubMed
go back to reference Mogdans, J., & Knudsen, E. I. (1994). Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hearing Research, 74, 148–164.CrossRefPubMed Mogdans, J., & Knudsen, E. I. (1994). Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hearing Research, 74, 148–164.CrossRefPubMed
go back to reference Moiseff, A. (1989). Bi-coordinate sound localization by the barn owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 164, 637–644.CrossRef Moiseff, A. (1989). Bi-coordinate sound localization by the barn owl. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 164, 637–644.CrossRef
go back to reference Moiseff, A., & Konishi, M. (1983). Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. Journal of Neuroscience, 3, 2553–2562.PubMed Moiseff, A., & Konishi, M. (1983). Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. Journal of Neuroscience, 3, 2553–2562.PubMed
go back to reference Mysore, S. P., & Knudsen, E. I. (2012). Reciprocal inhibition of inhibition: a circuit motif for flexible categorization in stimulus selection. Neuron, 73, 193–205.CrossRefPubMedPubMedCentral Mysore, S. P., & Knudsen, E. I. (2012). Reciprocal inhibition of inhibition: a circuit motif for flexible categorization in stimulus selection. Neuron, 73, 193–205.CrossRefPubMedPubMedCentral
go back to reference Mysore, S. P., & Knudsen, E. I. (2013). A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection. Nature Neuroscience, 16, 473–478.CrossRefPubMedPubMedCentral Mysore, S. P., & Knudsen, E. I. (2013). A shared inhibitory circuit for both exogenous and endogenous control of stimulus selection. Nature Neuroscience, 16, 473–478.CrossRefPubMedPubMedCentral
go back to reference Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.CrossRefPubMed Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.CrossRefPubMed
go back to reference Nix, J., & Hohmann, V. (2006). Sound source localization in real sound fields based on empirical statistics of interaural parametersa). Journal of the Acoustical Society of America, 119, 463–479.CrossRefPubMed Nix, J., & Hohmann, V. (2006). Sound source localization in real sound fields based on empirical statistics of interaural parametersa). Journal of the Acoustical Society of America, 119, 463–479.CrossRefPubMed
go back to reference Ohayon, S., van der Willigen, R. F., Wagner, H., Katsman, I., & Rivlin, E. (2006). On the barn owl’s visual pre-attack behavior: I. Structure of head movements and motion patterns. Journal of Comparative Physiology A, 192, 927–940.CrossRef Ohayon, S., van der Willigen, R. F., Wagner, H., Katsman, I., & Rivlin, E. (2006). On the barn owl’s visual pre-attack behavior: I. Structure of head movements and motion patterns. Journal of Comparative Physiology A, 192, 927–940.CrossRef
go back to reference Oruç, I., Maloney, L. T., & Landy, M. S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research, 43, 2451–2468.CrossRefPubMed Oruç, I., Maloney, L. T., & Landy, M. S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research, 43, 2451–2468.CrossRefPubMed
go back to reference Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 24, 1–15.CrossRefPubMed Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 24, 1–15.CrossRefPubMed
go back to reference Pecka, M., Siveke, I., Grothe, B., & Lesica, N. A. (2010). Enhancement of ITD coding within the initial stages of the auditory pathway. Journal of Neurophysiology, 103, 38–46.CrossRefPubMed Pecka, M., Siveke, I., Grothe, B., & Lesica, N. A. (2010). Enhancement of ITD coding within the initial stages of the auditory pathway. Journal of Neurophysiology, 103, 38–46.CrossRefPubMed
go back to reference Peña, J. L., & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Science, 97, 11787–11792.CrossRef Peña, J. L., & Konishi, M. (2000). Cellular mechanisms for resolving phase ambiguity in the owl’s inferior colliculus. Proceedings of the National Academy of Science, 97, 11787–11792.CrossRef
go back to reference Peña, J. L., & Konishi, M. (2001). Auditory spatial receptive fields created by multiplication. Science, 292, 249–252.CrossRefPubMed Peña, J. L., & Konishi, M. (2001). Auditory spatial receptive fields created by multiplication. Science, 292, 249–252.CrossRefPubMed
go back to reference Peña, J. L., & Konishi, M. (2002). From postsynaptic potentials to spikes in the genesis of auditory spatial receptive fields. Journal of Neuroscience, 22, 5652–5658.PubMed Peña, J. L., & Konishi, M. (2002). From postsynaptic potentials to spikes in the genesis of auditory spatial receptive fields. Journal of Neuroscience, 22, 5652–5658.PubMed
go back to reference Peña, J. L., & Konishi, M. (2004). Robustness of multiplicative processes in auditory spatial tuning. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24, 8907–8910.CrossRef Peña, J. L., & Konishi, M. (2004). Robustness of multiplicative processes in auditory spatial tuning. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24, 8907–8910.CrossRef
go back to reference Roman, N., Wang, D., & Brown, G. J. (2003). Speech segregation based on sound localization. Journal of the Acoustical Society of America, 114, 2236–2252.CrossRefPubMed Roman, N., Wang, D., & Brown, G. J. (2003). Speech segregation based on sound localization. Journal of the Acoustical Society of America, 114, 2236–2252.CrossRefPubMed
go back to reference Saberi, K., Takahashi, Y., Konishi, M., Albeck, Y., Arthur, B. J., & Farahbod, H. (1998). Effects of interaural decorrelation on neural and behavioral detection of spatial cues. Neuron, 21, 789–798.CrossRefPubMed Saberi, K., Takahashi, Y., Konishi, M., Albeck, Y., Arthur, B. J., & Farahbod, H. (1998). Effects of interaural decorrelation on neural and behavioral detection of spatial cues. Neuron, 21, 789–798.CrossRefPubMed
go back to reference Shi, L., & Griffiths, T.L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems 22 (pp. 1669–1677). Cambridge, MA: MIT Press. Shi, L., & Griffiths, T.L. (2009). Neural implementation of hierarchical Bayesian inference by importance sampling. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, & A. Culotta (Eds.), Advances in neural information processing systems 22 (pp. 1669–1677). Cambridge, MA: MIT Press. 
go back to reference Simoncelli, E.P. (2009). Optimal estimation in sensory systems. In M. Gazzaniga (Ed.), The cognitive neurosciences (vol. 4, pp. 525–535). Cambridge, MA: MIT Press. Simoncelli, E.P. (2009). Optimal estimation in sensory systems.  In M. Gazzaniga (Ed.), The cognitive neurosciences (vol. 4, pp. 525–535). Cambridge, MA: MIT Press.
go back to reference Spitzer, M. W., Bala, A. D., & Takahashi, T. T. (2003). Auditory spatial discrimination by barn owls in simulated echoic conditions. Journal of the Acoustical Society of America, 113, 1631–1645.CrossRefPubMed Spitzer, M. W., Bala, A. D., & Takahashi, T. T. (2003). Auditory spatial discrimination by barn owls in simulated echoic conditions. Journal of the Acoustical Society of America, 113, 1631–1645.CrossRefPubMed
go back to reference Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Review Neuroscience, 9, 255–266.CrossRef Stein, B. E., & Stanford, T. R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nature Review Neuroscience, 9, 255–266.CrossRef
go back to reference Takahashi, T., Moiseff, A., & Konishi, M. (1984). Time and intensity cues are processed independently in the auditory system of the owl. Journal of Neuroscience, 4, 1781–1786.PubMed Takahashi, T., Moiseff, A., & Konishi, M. (1984). Time and intensity cues are processed independently in the auditory system of the owl. Journal of Neuroscience, 4, 1781–1786.PubMed
go back to reference van Beers, R. J., Sittig, A. C., & Gon, J. J. (1999). Integration of proprioceptive and visual position-information: an experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.PubMed van Beers, R. J., Sittig, A. C., & Gon, J. J. (1999). Integration of proprioceptive and visual position-information: an experimentally supported model. Journal of Neurophysiology, 81, 1355–1364.PubMed
go back to reference Van Trees HL (2004) Detection, estimation, and modulation theory. New York, NY: Wiley. Van Trees HL (2004) Detection, estimation, and modulation theory. New York, NY: Wiley.
go back to reference Wagner, H., Takahashi, T., & Konishi, M. (1987). Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 7, 3105–3116. Wagner, H., Takahashi, T., & Konishi, M. (1987). Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 7, 3105–3116.
go back to reference Whitchurch, E. A., & Takahashi, T. T. (2006). Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). Journal of Neurophysiology, 96, 730–745.CrossRefPubMed Whitchurch, E. A., & Takahashi, T. T. (2006). Combined auditory and visual stimuli facilitate head saccades in the barn owl (Tyto alba). Journal of Neurophysiology, 96, 730–745.CrossRefPubMed
go back to reference Wightman, F. L. & Kistler, D. J. (1993). Sound localization. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Human psychophysics (pp. 155–192). New York: Springer-Verlag. Wightman, F. L. & Kistler, D. J. (1993). Sound localization. In W. A. Yost, A. N. Popper, & R. R. Fay (Eds.), Human psychophysics (pp. 155–192). New York: Springer-Verlag.
go back to reference Xu, J., Yu, L., Rowland, B. A., Stanford, T. R., & Stein, B. E. (2012). Incorporating cross-modal statistics in the development and maintenance of multisensory integration. Journal of Neuroscience, 32, 2287–2298.CrossRefPubMedPubMedCentral Xu, J., Yu, L., Rowland, B. A., Stanford, T. R., & Stein, B. E. (2012). Incorporating cross-modal statistics in the development and maintenance of multisensory integration. Journal of Neuroscience, 32, 2287–2298.CrossRefPubMedPubMedCentral
Metadata
Title
Optimal nonlinear cue integration for sound localization
Authors
Brian J. Fischer
Jose Luis Peña
Publication date
06-10-2016
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 1/2017
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0626-4

Other articles of this Issue 1/2017

Journal of Computational Neuroscience 1/2017 Go to the issue

Premium Partner