Skip to main content
Top
Published in:

23-01-2023

Optimal Polynomial Meshes Exist on any Multivariate Convex Domain

Authors: Feng Dai, Andriy Prymak

Published in: Foundations of Computational Mathematics | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We show that optimal polynomial meshes exist for every convex body in \({\mathbb {R}}^d\), confirming a conjecture by A. Kroó.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
There appears to be no consistency in the literature for the names of the maximal volume-inscribed ellipsoid and the minimal volume-circumscribed ellipsoid; either one may be referred to as John’s or Löwner-John’s or Löwner’s ellipsoid. According to Busemann, Löwner discovered the uniqueness of the minimal volume ellipsoid, but this was never published. John established a characterization for these ellipsoids which implied uniqueness and other properties. An interested reader is referred to the survey [10].
 
Literature
1.
go back to reference Bloom, T., Bos, L. P., Calvi, J.-P., Levenberg, N., Polynomial interpolation and approximation in \(\mathbb{C}^d\), Ann. Polon. Math., 106, 2012, 53–81,MathSciNetCrossRef Bloom, T., Bos, L. P., Calvi, J.-P., Levenberg, N., Polynomial interpolation and approximation in \(\mathbb{C}^d\), Ann. Polon. Math., 106, 2012, 53–81,MathSciNetCrossRef
2.
go back to reference Bos, L., Calvi, J.-P., Levenberg, N., Sommariva, A., Vianello, M., Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points, Math. Comp., 80, 2011, 275, 1623–1638,MathSciNetCrossRef Bos, L., Calvi, J.-P., Levenberg, N., Sommariva, A., Vianello, M., Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points, Math. Comp., 80, 2011, 275, 1623–1638,MathSciNetCrossRef
4.
go back to reference Boyd, Stephen, Vandenberghe, Lieven, Convex optimization, Cambridge University Press, Cambridge, 2004, Boyd, Stephen, Vandenberghe, Lieven, Convex optimization, Cambridge University Press, Cambridge, 2004,
5.
go back to reference Dai, F., Prymak, A., Temlyakov, V. N., Tikhonov, S. Yu., Integral norm discretization and related problems, Russian, with Russian summary, Uspekhi Mat. Nauk, 74, 2019, 4(448), 3–58, Russian Math. Surveys, 74, 2019, 4, 579–630, , Dai, F., Prymak, A., Temlyakov, V. N., Tikhonov, S. Yu., Integral norm discretization and related problems, Russian, with Russian summary, Uspekhi Mat. Nauk, 74, 2019, 4(448), 3–58, Russian Math. Surveys, 74, 2019, 4, 579–630, ,
6.
go back to reference De Marchi, Stefano, Marchioro, Martina, Sommariva, Alvise, Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder, Appl. Math. Comput., 218, 2012, 21, 10617–10629,MathSciNetCrossRef De Marchi, Stefano, Marchioro, Martina, Sommariva, Alvise, Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder, Appl. Math. Comput., 218, 2012, 21, 10617–10629,MathSciNetCrossRef
7.
go back to reference DeVore, Ronald A., Lorentz, George G., Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303, Springer-Verlag, Berlin, 1993, x+449, DeVore, Ronald A., Lorentz, George G., Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 303, Springer-Verlag, Berlin, 1993, x+449,
8.
10.
go back to reference Henk, Martin, Löwner-John ellipsoids, Doc. Math., 2012, Extra vol.: Optimization stories, 95–106, Henk, Martin, Löwner-John ellipsoids, Doc. Math., 2012, Extra vol.: Optimization stories, 95–106,
12.
go back to reference Kroó, András, Bernstein type inequalities on star-like domains in \(\mathbb{R}^d\) with application to norming sets, Bull. Math. Sci., 3, 2013, 3, 349–361,MathSciNetCrossRef Kroó, András, Bernstein type inequalities on star-like domains in \(\mathbb{R}^d\) with application to norming sets, Bull. Math. Sci., 3, 2013, 3, 349–361,MathSciNetCrossRef
13.
go back to reference Kroó, András, Christoffel functions on convex and starlike domains in \(\mathbb{R}^d\), J. Math. Anal. Appl., 421, 2015, 1, 718–729,MathSciNetCrossRef Kroó, András, Christoffel functions on convex and starlike domains in \(\mathbb{R}^d\), J. Math. Anal. Appl., 421, 2015, 1, 718–729,MathSciNetCrossRef
15.
go back to reference Kroó, András, On the existence of optimal meshes in every convex domain on the plane, J. Approx. Theory, 238, 2019, 26–37,MathSciNetCrossRef Kroó, András, On the existence of optimal meshes in every convex domain on the plane, J. Approx. Theory, 238, 2019, 26–37,MathSciNetCrossRef
16.
go back to reference Jetter, Kurt, Stöckler, Joachim, Ward, Joseph D., Error estimates for scattered data interpolation on spheres, Math. Comp., 68, 1999, 226, 733–747,MathSciNetCrossRef Jetter, Kurt, Stöckler, Joachim, Ward, Joseph D., Error estimates for scattered data interpolation on spheres, Math. Comp., 68, 1999, 226, 733–747,MathSciNetCrossRef
17.
go back to reference Mastroianni, G., Totik, V., Weighted polynomial inequalities with doubling and \(A_\infty \) weights, Constr. Approx., 16, 2000, 1, 37–71,MathSciNetCrossRef Mastroianni, G., Totik, V., Weighted polynomial inequalities with doubling and \(A_\infty \) weights, Constr. Approx., 16, 2000, 1, 37–71,MathSciNetCrossRef
18.
go back to reference Piazzon, Federico, Optimal polynomial admissible meshes on some classes of compact subsets of \(\mathbb{R}^d\), J. Approx. Theory, 207, 2016, 241–264,MathSciNetCrossRef Piazzon, Federico, Optimal polynomial admissible meshes on some classes of compact subsets of \(\mathbb{R}^d\), J. Approx. Theory, 207, 2016, 241–264,MathSciNetCrossRef
19.
go back to reference Prymak, A., Geometric computation of Christoffel functions on planar convex domains, J. Approx. Theory, 268, 2021, Paper No. 105603, 13, Prymak, A., Geometric computation of Christoffel functions on planar convex domains, J. Approx. Theory, 268, 2021, Paper No. 105603, 13,
20.
go back to reference Roberts, A. Wayne, Varberg, Dale E., Convex functions, Pure and Applied Mathematics, Vol. 57, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973, xx+300, Roberts, A. Wayne, Varberg, Dale E., Convex functions, Pure and Applied Mathematics, Vol. 57, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973, xx+300,
21.
go back to reference Schneider, Rolf, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 151, Second expanded edition, Cambridge University Press, Cambridge, 2014, xxii+736, Schneider, Rolf, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 151, Second expanded edition, Cambridge University Press, Cambridge, 2014, xxii+736,
Metadata
Title
Optimal Polynomial Meshes Exist on any Multivariate Convex Domain
Authors
Feng Dai
Andriy Prymak
Publication date
23-01-2023
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 3/2024
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-023-09606-x

Premium Partner