Skip to main content
Top
Published in: Neural Computing and Applications 12/2021

18-11-2020 | Original Article

Optimal power flow solution with stochastic wind power using the Lévy coyote optimization algorithm

Authors: Enes Kaymaz, Serhat Duman, Ugur Guvenc

Published in: Neural Computing and Applications | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Optimal power flow (OPF) is one of the most fundamental single/multi-objective, nonlinear, and non-convex optimization problems in modern power systems. Renewable energy sources are integrated into power systems to provide environmental sustainability and to reduce emissions and fuel costs. Therefore, some conventional thermal generators are being replaced with wind power sources. Although wind power is a widely used renewable energy source, it is intermittent in nature and wind speed is uncertain at any given time. For this reason, the Weibull probability density function is one of the important methods used in calculating available wind power. This paper presents an improved method based on the Lévy Coyote optimization algorithm (LCOA) for solving the OPF problem with stochastic wind power. In the proposed LCOA, Lévy Flights were added to the Coyote optimization algorithm to avoid local optima and to improve the ability to focus on optimal solutions. To show the effect of the novel contribution to the algorithm, the LCOA method was tested using the Congress on Evolutionary Computation-2005 benchmark test functions. Subsequently, the solution to the OPF problem with stochastic wind power was tested via the LCOA and other heuristic optimization algorithms in IEEE 30-bus, 57-bus, and 118-bus test systems. Eighteen different cases were executed including fuel cost, emissions, active power loss, voltage profile, and voltage stability, in single- and multi-objective optimization. The results showed that the LCOA was more effective than the other optimization methods at reaching an optimal solution to the OPF problem with stochastic wind power.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manag 59:86–95CrossRef Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manag 59:86–95CrossRef
2.
go back to reference Sönmez Y, Güvenc U, Duman S, Yörükeren N (2012) Optimal power flow incorporating FACTS devices using gravitational search algorithm. In: 2012 international symposium on innovations in intelligent systems and applications (INISTA), pp 1–5, IEEE Sönmez Y, Güvenc U, Duman S, Yörükeren N (2012) Optimal power flow incorporating FACTS devices using gravitational search algorithm. In: 2012 international symposium on innovations in intelligent systems and applications (INISTA), pp 1–5, IEEE
3.
go back to reference He S, Wen JY, Prempain E, Wu QH, Fitch J, Mann S (2004) An improved particle swarm optimization for optimal power flow. In: International conference on power system technology (POWERCON), Singapore, pp 1633–1637 He S, Wen JY, Prempain E, Wu QH, Fitch J, Mann S (2004) An improved particle swarm optimization for optimal power flow. In: International conference on power system technology (POWERCON), Singapore, pp 1633–1637
4.
go back to reference Abido MA (2002a) Optimal power flow using tabu search algorithm. Electr Power Compon Syst 30(5):469–483CrossRef Abido MA (2002a) Optimal power flow using tabu search algorithm. Electr Power Compon Syst 30(5):469–483CrossRef
5.
go back to reference Glover JD, Sarma MS (2002) Power system analysis and design, 3rd edn. Brooks/Cole, New York, pp 275–276 Glover JD, Sarma MS (2002) Power system analysis and design, 3rd edn. Brooks/Cole, New York, pp 275–276
6.
go back to reference Yan X, Quintana VH (1999) Improving an interior-point-based off by dynamic adjustments of step sizes and tolerances. IEEE Trans Power Syst 14(2):709–716CrossRef Yan X, Quintana VH (1999) Improving an interior-point-based off by dynamic adjustments of step sizes and tolerances. IEEE Trans Power Syst 14(2):709–716CrossRef
7.
go back to reference Olofsson M, Andersson G, Söder L (1995) Linear programming based optimal power flow using second order sensitivities. IEEE Trans Power Syst 10(3):1691–1697CrossRef Olofsson M, Andersson G, Söder L (1995) Linear programming based optimal power flow using second order sensitivities. IEEE Trans Power Syst 10(3):1691–1697CrossRef
8.
go back to reference Sun DI, Ashley B, Brewer B, Hughes A (1984) Optimal power flow by newton approach. IEEE Trans Power Appar Syst 3(10):2864–2880CrossRef Sun DI, Ashley B, Brewer B, Hughes A (1984) Optimal power flow by newton approach. IEEE Trans Power Appar Syst 3(10):2864–2880CrossRef
9.
go back to reference Santos A, Deckmann S, Soares S (1988) A dual augmented Lagrangian approach for optimal power flow. IEEE Trans Power Syst 3(3):1020–1025CrossRef Santos A, Deckmann S, Soares S (1988) A dual augmented Lagrangian approach for optimal power flow. IEEE Trans Power Syst 3(3):1020–1025CrossRef
10.
go back to reference Osman MS, Abo-Sinna MA, Mousa AA (2004) A solution to the optimal power flow using genetic algorithm. Appl Math Comput 155(2):391–405MathSciNetCrossRef Osman MS, Abo-Sinna MA, Mousa AA (2004) A solution to the optimal power flow using genetic algorithm. Appl Math Comput 155(2):391–405MathSciNetCrossRef
11.
go back to reference A. Bhattacharya and P.K. Roy “Solution of multi-objective optimal power flow using gravitational search algorithm,” IET Generation, Transmission, Distribution vol.6, no.8, pp.751–763,2012 A. Bhattacharya and P.K. Roy “Solution of multi-objective optimal power flow using gravitational search algorithm,IET Generation, Transmission, Distribution vol.6, no.8, pp.751–763,2012
12.
go back to reference Roy PK, Paul C (2015) Optimal power flow using krill herd algorithm. Int Trans Electr Energy Syst 25(8):1397–1419CrossRef Roy PK, Paul C (2015) Optimal power flow using krill herd algorithm. Int Trans Electr Energy Syst 25(8):1397–1419CrossRef
13.
go back to reference Abido MA (2002b) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24(7):563–571CrossRef Abido MA (2002b) Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 24(7):563–571CrossRef
14.
go back to reference Mohamed A-AA, Mohamed YS, El-Gaafary AAM, Hemeida AM (2017) Optimal power flow using moth swarm algorithm. Electr Power Syst Res 142:190–206CrossRef Mohamed A-AA, Mohamed YS, El-Gaafary AAM, Hemeida AM (2017) Optimal power flow using moth swarm algorithm. Electr Power Syst Res 142:190–206CrossRef
15.
go back to reference El Ela AAA, Abido MA, Spea SR (2010) Optimal power flow using differential evolution algorithm. Electr Power Syst Res 80(7):878–885CrossRef El Ela AAA, Abido MA, Spea SR (2010) Optimal power flow using differential evolution algorithm. Electr Power Syst Res 80(7):878–885CrossRef
16.
go back to reference Mahdad B, Srairi K (2015) Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms. Energy Convers Manag 98:411–429CrossRef Mahdad B, Srairi K (2015) Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms. Energy Convers Manag 98:411–429CrossRef
17.
go back to reference Manoranjitham GE, Shunmugalatha A (2015) Application of firefly algorithm on optimal power flow control incorporating simplified impedance UPFC model. Int J Electr Power Energy Syst 71:358–363CrossRef Manoranjitham GE, Shunmugalatha A (2015) Application of firefly algorithm on optimal power flow control incorporating simplified impedance UPFC model. Int J Electr Power Energy Syst 71:358–363CrossRef
19.
go back to reference Roa-Sepulveda CA, Pavez-Lazo BJ (2003) A solution to the optimal power flow using simulated annealing. Int J Electr Power Energy Syst 25(1):47–57CrossRef Roa-Sepulveda CA, Pavez-Lazo BJ (2003) A solution to the optimal power flow using simulated annealing. Int J Electr Power Energy Syst 25(1):47–57CrossRef
20.
go back to reference Bouktir T, Slimani L, Belkacemi M (2004) A genetic algorithm for solving the optimal power flow problem. Leonardo J Sci 4(4):44–58 Bouktir T, Slimani L, Belkacemi M (2004) A genetic algorithm for solving the optimal power flow problem. Leonardo J Sci 4(4):44–58
21.
go back to reference Dutta P, Sinha AK (2006) Voltage stability constrained multi-objective optimal powerflow using particle swarm optimization. In: First international conference on industrial and information systems (ICIISs), Sri Lanka, pp 161–166 Dutta P, Sinha AK (2006) Voltage stability constrained multi-objective optimal powerflow using particle swarm optimization. In: First international conference on industrial and information systems (ICIISs), Sri Lanka, pp 161–166
22.
go back to reference Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solitons Fract 78:10–21MathSciNetCrossRef Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solitons Fract 78:10–21MathSciNetCrossRef
23.
go back to reference Reddy SS, Rathnam CS (2016) Optimal power flow using glowworm swarm optimization. Int J Electr Power Energy Syst 80:128–139CrossRef Reddy SS, Rathnam CS (2016) Optimal power flow using glowworm swarm optimization. Int J Electr Power Energy Syst 80:128–139CrossRef
24.
go back to reference Panda A, Tripathy M (2015) Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm. Energy 93:816–827CrossRef Panda A, Tripathy M (2015) Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm. Energy 93:816–827CrossRef
25.
go back to reference Marley JF, Vrakopoulou M, Hiskens IA (2016) An AC-QP optimal power flow algorithm considering wind forecast uncertainty. In: Innovative smart grid technologies-Asia (ISGT-Asia), Melbourne, Australia, pp 317–323 Marley JF, Vrakopoulou M, Hiskens IA (2016) An AC-QP optimal power flow algorithm considering wind forecast uncertainty. In: Innovative smart grid technologies-Asia (ISGT-Asia), Melbourne, Australia, pp 317–323
26.
go back to reference Reddy SS, Bijwe PR (2016) Day-ahead and real time optimal power flow considering renewable energy resources. Int J Electr Power Energy Syst 82:400–408CrossRef Reddy SS, Bijwe PR (2016) Day-ahead and real time optimal power flow considering renewable energy resources. Int J Electr Power Energy Syst 82:400–408CrossRef
27.
go back to reference Roy R, Jadhav HT (2015) Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int J Electr Power Energy Syst 64:562–578CrossRef Roy R, Jadhav HT (2015) Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int J Electr Power Energy Syst 64:562–578CrossRef
29.
go back to reference Hetzer J, Yu DC, Bhattarai K (2008) An economic dispatch model ıncorporating wind power. IEEE Trans Energy Convers 23(2):603–611CrossRef Hetzer J, Yu DC, Bhattarai K (2008) An economic dispatch model ıncorporating wind power. IEEE Trans Energy Convers 23(2):603–611CrossRef
30.
go back to reference Reddy SS (2017) Optimal power flow with renewable energy resources including storage. Electr Eng 99(2):685–695CrossRef Reddy SS (2017) Optimal power flow with renewable energy resources including storage. Electr Eng 99(2):685–695CrossRef
31.
go back to reference Biswas PP, Suganthan PN, Amaratunga GAJ (2017) Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers Manag 148:1194–1207CrossRef Biswas PP, Suganthan PN, Amaratunga GAJ (2017) Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers Manag 148:1194–1207CrossRef
32.
go back to reference Duman S (2018) A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems. IEEE Access 6:45394–45416CrossRef Duman S (2018) A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems. IEEE Access 6:45394–45416CrossRef
33.
go back to reference Pierazan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: IEEE congress on evolutionary computation (CEC), pp 1–8 Pierazan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: IEEE congress on evolutionary computation (CEC), pp 1–8
34.
go back to reference Güvenc U, Kaymaz E (2019) Economic dispatch integrated wind power using Coyote optimization algorithm. In: Proceedings of the 2019 7th international Istanbul smart grids and cities congress and fair (ICSG), Istanbul, Turkey, pp 179–183, 25–26 April 2019 Güvenc U, Kaymaz E (2019) Economic dispatch integrated wind power using Coyote optimization algorithm. In: Proceedings of the 2019 7th international Istanbul smart grids and cities congress and fair (ICSG), Istanbul, Turkey, pp 179–183, 25–26 April 2019
35.
36.
go back to reference Yang XS (2010) Firefly algorithm, Levy flights and global optimization. Research and development in intelligent systems XXVI. Springer, London, pp 209–218CrossRef Yang XS (2010) Firefly algorithm, Levy flights and global optimization. Research and development in intelligent systems XXVI. Springer, London, pp 209–218CrossRef
37.
go back to reference Candela R, Cottone G, Scimemi GF, Sanseverino ER (2009) Lévy flights for ant colony optimization in continuous domains. In: Mathematical theory and computational practice fifth conference on computability in Europe, Heidelberg, Germany, pp 79–88 Candela R, Cottone G, Scimemi GF, Sanseverino ER (2009) Lévy flights for ant colony optimization in continuous domains. In: Mathematical theory and computational practice fifth conference on computability in Europe, Heidelberg, Germany, pp 79–88
38.
go back to reference Candela R, Cottone G, Scimemi GF, Sanseverino ER (2010) Composite laminates buckling optimization through Lévy based ant colony optimization. In: 23rd international conference on industrial engineering and other applications of applied intelligent systems, Cordoba, Spain, pp 288–297 Candela R, Cottone G, Scimemi GF, Sanseverino ER (2010) Composite laminates buckling optimization through Lévy based ant colony optimization. In: 23rd international conference on industrial engineering and other applications of applied intelligent systems, Cordoba, Spain, pp 288–297
39.
go back to reference Cottone G, Pirrotta A, Scimemi GF, Sanseverino ER (2010) Damage identification by Lévy ant colony optimization. In: Straub D (ed) Reliability and optimization of structural system. Taylor & Francis, London, pp 37–44 Cottone G, Pirrotta A, Scimemi GF, Sanseverino ER (2010) Damage identification by Lévy ant colony optimization. In: Straub D (ed) Reliability and optimization of structural system. Taylor & Francis, London, pp 37–44
40.
go back to reference Zhang Y, Jin Z, Zhao X, Yang Q (2020) Backtracking search algorithm with Lévy flight for estimating parameters of photovoltaic models. Energy Convers Manag 208:112615CrossRef Zhang Y, Jin Z, Zhao X, Yang Q (2020) Backtracking search algorithm with Lévy flight for estimating parameters of photovoltaic models. Energy Convers Manag 208:112615CrossRef
41.
go back to reference Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, May 2005 Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, May 2005
42.
go back to reference Morshed MJ, Asgharpour A (2014) A hybrid imperialist competitive-sequential quadratic programming (HIC-SQP) algorithm for solving economic load dispatch with incorporating stochastic wind power: a comparative study on heuristic optimization techniques. Energy Convers Manag (Elsevier) 84:30–40CrossRef Morshed MJ, Asgharpour A (2014) A hybrid imperialist competitive-sequential quadratic programming (HIC-SQP) algorithm for solving economic load dispatch with incorporating stochastic wind power: a comparative study on heuristic optimization techniques. Energy Convers Manag (Elsevier) 84:30–40CrossRef
43.
go back to reference Liu X, Xu W (2010) Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans Power Syst 25(3):1705–1713CrossRef Liu X, Xu W (2010) Minimum emission dispatch constrained by stochastic wind power availability and cost. IEEE Trans Power Syst 25(3):1705–1713CrossRef
44.
go back to reference Güvenç U, Duman S, Kaymaz E (2018) Economic dispatch of power system including wind power using salp swarm algorithm. Presented at 7th international conference on advanced technologies (ICAT'18), Antalya, Turkey Güvenç U, Duman S, Kaymaz E (2018) Economic dispatch of power system including wind power using salp swarm algorithm. Presented at 7th international conference on advanced technologies (ICAT'18), Antalya, Turkey
45.
go back to reference Kessel P, Glavitsch H (1986) Estimating the voltage stability of a power system. IEEE Trans Power Deliv 1(3):346–354CrossRef Kessel P, Glavitsch H (1986) Estimating the voltage stability of a power system. IEEE Trans Power Deliv 1(3):346–354CrossRef
46.
go back to reference Barthelemy P, Bertolotti J, Wiersma DS (2008) A Lévy flight for light. Nature 453:495–498CrossRef Barthelemy P, Bertolotti J, Wiersma DS (2008) A Lévy flight for light. Nature 453:495–498CrossRef
47.
go back to reference Mantegna RN, Stanley HE (1994) Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys Rev Lett 73(22):2946MathSciNetCrossRef Mantegna RN, Stanley HE (1994) Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys Rev Lett 73(22):2946MathSciNetCrossRef
48.
go back to reference Yu JT, Kim CH, Wadood A, Khurshiad T, Rhee S (2019) Self-adaptive multi-population JAYA algorithm with Lévy flights for solving economic load dispatch problems. IEEE Access 7:21372–21384CrossRef Yu JT, Kim CH, Wadood A, Khurshiad T, Rhee S (2019) Self-adaptive multi-population JAYA algorithm with Lévy flights for solving economic load dispatch problems. IEEE Access 7:21372–21384CrossRef
49.
go back to reference Biedenkapp A, Lindauer MT, Eggensperger K, Hutter F, Fawcett C, Hoos HH (2017) Efficient parameter importance analysis via ablation with surrogates. In: AAAI, pp 773–779 Biedenkapp A, Lindauer MT, Eggensperger K, Hutter F, Fawcett C, Hoos HH (2017) Efficient parameter importance analysis via ablation with surrogates. In: AAAI, pp 773–779
50.
go back to reference Fawcett C, Hoos H (2016) Analysing differences between algorithm configurations through ablation. Journal of Heuristics 22(4):431–458CrossRef Fawcett C, Hoos H (2016) Analysing differences between algorithm configurations through ablation. Journal of Heuristics 22(4):431–458CrossRef
51.
go back to reference Zhang X, Zhang X (2020) Aset-based differential evolution algorithm for QoS-oriented and cost-effective ride sharing. Appl Soft Comput J 96:1–11 Zhang X, Zhang X (2020) Aset-based differential evolution algorithm for QoS-oriented and cost-effective ride sharing. Appl Soft Comput J 96:1–11
52.
go back to reference Zheng W, Gou C, Yan L, Wang F-Y (2019) Differential-evolution based generative adversarial networks for edge detection. In: CVPR workshops Zheng W, Gou C, Yan L, Wang F-Y (2019) Differential-evolution based generative adversarial networks for edge detection. In: CVPR workshops
53.
go back to reference Li L, Wei Z, Hao J-K, He K (2020) Probability learning based tabu search for the budgeted maximum coverage problem. arXiv:2007.05971 [cs.AI] Li L, Wei Z, Hao J-K, He K (2020) Probability learning based tabu search for the budgeted maximum coverage problem. arXiv:​2007.​05971 [cs.AI]
55.
go back to reference Alsac O, Stott B (1974) Optimal load flow with steady-state security. IEEE Trans Power Appar Syst 93(3):745–751CrossRef Alsac O, Stott B (1974) Optimal load flow with steady-state security. IEEE Trans Power Appar Syst 93(3):745–751CrossRef
57.
go back to reference Hınıslıoğlu Y (2018) Kaotik güve sürüsü algoritması kullanarak rüzgar gücü entegreli optimal güç akışı. M.Sc. thesis, Department of Electrics & Electronics and Computer Engineering, Duzce University, Duzce, Türkiye Hınıslıoğlu Y (2018) Kaotik güve sürüsü algoritması kullanarak rüzgar gücü entegreli optimal güç akışı. M.Sc. thesis, Department of Electrics & Electronics and Computer Engineering, Duzce University, Duzce, Türkiye
Metadata
Title
Optimal power flow solution with stochastic wind power using the Lévy coyote optimization algorithm
Authors
Enes Kaymaz
Serhat Duman
Ugur Guvenc
Publication date
18-11-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 12/2021
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05455-9

Other articles of this Issue 12/2021

Neural Computing and Applications 12/2021 Go to the issue

Premium Partner