Skip to main content
Top

2024 | OriginalPaper | Chapter

Optimal Sampling Locations for Fractional Partial Differential Equations Using D-Optimality

Authors : Edward L. Boone, Ryad Ghanam

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Researchers are becoming increasingly interested in using Fractional Partial Differential Equation (FPDE) models for physical systems such as gas flows through porous materials. These models rely on the fraction of the differentiation \(\alpha \), which needs to be estimated from empirical data. Experimentation is needed to obtain empirical data where pressures need to be measured at various times, t, from the initial pressure and distances x from the pressure source which produces an output pressure p(xt). While sampling times are easy to choose when a sensor is in place. Typically the location of sensors from the pressure source are arbitrarily chosen. This work shows how to design experiments using a two stage design with a base design and a follow design using D-optimality to determine the location(s) of additional sensors along x which allows for the minimization of the volume of the Variance-Covariance matrix of the parameters. A Bayesian approach is utilized for parameter estimation and simulated annealing is used to search through the possible locations for sensors in the follow up design. A simple FPDE is used to illustrate the approach with a base design of six sensor locations and follow-up designs for the simultaneous addition of 1, 2, 3, 4 and 5 new sensor locations. All of the follow-up designs suggest points near where the solution to the FPDE are optimal locations as well as other locations depending the number of sensors.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)CrossRef Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)CrossRef
2.
go back to reference Fomin, S.A., Chugunov, V.A., Hashida, T.: Non-Fickian mass transport in fractured porous media. Adv. Water Resour. 34(2), 205–214 (2011)CrossRef Fomin, S.A., Chugunov, V.A., Hashida, T.: Non-Fickian mass transport in fractured porous media. Adv. Water Resour. 34(2), 205–214 (2011)CrossRef
3.
go back to reference Hilfer, R.: In: Hilfer, R. (eds.) Applications of Fractional Calculus in Physics, pp. 87 and 429. World Scientific Publishing Company, Singapore (2000) Hilfer, R.: In: Hilfer, R. (eds.) Applications of Fractional Calculus in Physics, pp. 87 and 429. World Scientific Publishing Company, Singapore (2000)
4.
go back to reference Hilfer, R.: Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 284, 399–408 (2002)CrossRef Hilfer, R.: Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 284, 399–408 (2002)CrossRef
6.
go back to reference Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics, Recent Advances. World Scientific, Singapore (2011)CrossRef Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics, Recent Advances. World Scientific, Singapore (2011)CrossRef
7.
go back to reference Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRef Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRef
8.
go back to reference Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (b) 133(1), 425–430 (1986)MathSciNetCrossRef Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi (b) 133(1), 425–430 (1986)MathSciNetCrossRef
9.
go back to reference Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics, Recent Advances. World Scientific, Singapore (2011)CrossRef Klafter, J., Lim, S.C., Metzler, R.: Fractional Dynamics, Recent Advances. World Scientific, Singapore (2011)CrossRef
10.
go back to reference Ghanam, R., Malik, N., Tatar, N.: Transparent boundary conditions for a diffusion problem modified by Hilfer derivative. J. Math. Sci. Univ. Tokyo 21, 129–152 (2014) Ghanam, R., Malik, N., Tatar, N.: Transparent boundary conditions for a diffusion problem modified by Hilfer derivative. J. Math. Sci. Univ. Tokyo 21, 129–152 (2014)
11.
go back to reference Boone, E., Ghanam, R., Malik, N., Whitlinger, J.: Using the Bayesian framework for inference in fractional advection-diffusion transport system. Int. J. Appl. Math. 33(5), 783–803 (2020)CrossRef Boone, E., Ghanam, R., Malik, N., Whitlinger, J.: Using the Bayesian framework for inference in fractional advection-diffusion transport system. Int. J. Appl. Math. 33(5), 783–803 (2020)CrossRef
12.
go back to reference Montgomery, D.: Des. Anal. Experiments, 10th edn. Wiley, New York, NY (2019) Montgomery, D.: Des. Anal. Experiments, 10th edn. Wiley, New York, NY (2019)
13.
go back to reference Hinkelmann, K., Kempthorne, O.: Design and Analysis of Experiments, Volume 1: Introduction to Experimental Design, 2nd edn. Wiley, New York, NY (2007) Hinkelmann, K., Kempthorne, O.: Design and Analysis of Experiments, Volume 1: Introduction to Experimental Design, 2nd edn. Wiley, New York, NY (2007)
14.
go back to reference Malik, N.A., Ali, I., Chanane, B.: numerical solutions of the non-linear fractional transport models in unconventional hydrocabons reservoirs using variational iteration method. In: Proceedings of the 5th International Conference on Porous Media and its Applications in Science and Engineering ICPM5 Malik, N.A., Ali, I., Chanane, B.: numerical solutions of the non-linear fractional transport models in unconventional hydrocabons reservoirs using variational iteration method. In: Proceedings of the 5th International Conference on Porous Media and its Applications in Science and Engineering ICPM5
15.
go back to reference He, J.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-linear Mech. 34(4), 699–708 He, J.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-linear Mech. 34(4), 699–708
16.
go back to reference Wackerly, D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with Applications, 7th edn. Thomson Brooks/Cole, Belmont, CA (2008) Wackerly, D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with Applications, 7th edn. Thomson Brooks/Cole, Belmont, CA (2008)
Metadata
Title
Optimal Sampling Locations for Fractional Partial Differential Equations Using D-Optimality
Authors
Edward L. Boone
Ryad Ghanam
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_3

Premium Partner