Skip to main content
Top

2019 | OriginalPaper | Chapter

Optimal Topological Design of a Thermal Isolator for a Monopropellant Space Thruster

Authors : Sebastián Miguel Giusti, Augusto Alejandro Romero, Javier Eduardo Salomone

Published in: Modeling and Optimization in Space Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work is focused on the study of the thermal-structural behavior of a thermal isolator device employed in a monopropellant thruster for space applications. Engines of this kind are widely used to perform attitude corrections in artificial satellites. Their operating principle is based on the catalytic decomposition of the fuel (hydrazine), producing gasification with a consequent heat generation. These gases are properly conducted to a nozzle to produce thrust. A couple of redundant solenoid on-off electro-valves, in a serial configuration, are used to control the fuel supply system. To avoid leak risk in this system, soft seals are also used. Duration and performance of this kind of engine rely on two main aspects. The first one is the number of cold ignitions. When the engine starts at low temperature conditions, the catalytic bed is subjected to a thermal transient (high gradient—hundreds of C/s) which generates a breakage of grains, causing low size particles to fill the inter-granular spaces, clogging the downstream gas flow. The second aspect to consider in the reduction of the life span is the loss of reliability in the soft seals used in the fuel supply system due to high temperature degradation. Such degradation can drive the module out of service, generate a catastrophic failure in the reactor, or lead to mission stoppage. A thermal isolator is used to protect the seals from a premature degradation due to thermal effects. Its structural design is optimized by using a novelty structural optimization methodology based on topological sensitivity analysis in this work. This analysis allows achieving the best structural configuration that minimizes the temperature field around the seals and also the isolator weight. Finally, a thermal and structural evaluation of the monopropellant thruster is presented in order to validate the structural strength and integrity. Inertial forces due to high G’s are considered in this analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Allaire, G., Jouve, F., Van Goethem, N.: Damage and fracture evolution in brittle materials by shape optimization methods. Chin. J. Comput. Phys. 230(12), 5010–5044 (2011)MathSciNetCrossRef Allaire, G., Jouve, F., Van Goethem, N.: Damage and fracture evolution in brittle materials by shape optimization methods. Chin. J. Comput. Phys. 230(12), 5010–5044 (2011)MathSciNetCrossRef
2.
go back to reference Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49(1–2), 87–108 (2006)MathSciNetMATH Amstutz, S.: Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49(1–2), 87–108 (2006)MathSciNetMATH
3.
go back to reference Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)MathSciNetCrossRef Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006)MathSciNetCrossRef
4.
go back to reference Amstutz, S., Novotny, A.A.: Topological optimization of structures subject to von Mises stress constraints. Struct. Multidiscip. Optim. 41(3), 407–420 (2010)MathSciNetCrossRef Amstutz, S., Novotny, A.A.: Topological optimization of structures subject to von Mises stress constraints. Struct. Multidiscip. Optim. 41(3), 407–420 (2010)MathSciNetCrossRef
5.
go back to reference Amstutz, S., Giusti, S.M., Novotny, A.A., de Souza Neto, E.A.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84, 733–756 (2010)MathSciNetCrossRef Amstutz, S., Giusti, S.M., Novotny, A.A., de Souza Neto, E.A.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84, 733–756 (2010)MathSciNetCrossRef
6.
go back to reference Amstutz, S., Novotny, A.A., de Souza Neto, E.A.: Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints. Comput. Methods Appl. Mech. Eng. 233–236, 123–136 (2012)MathSciNetCrossRef Amstutz, S., Novotny, A.A., de Souza Neto, E.A.: Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints. Comput. Methods Appl. Mech. Eng. 233–236, 123–136 (2012)MathSciNetCrossRef
7.
go back to reference Cagliolo, C.M., Salomone, J.E., Jazni, J.E., Lagier, J.E.: Analysis of a thermal behaviour of the fuel supply pipe in a low thrust monopropellant engines. In: 4th Argentinian Congress in Space Technology (CATE), Buenos Aires (2007) Cagliolo, C.M., Salomone, J.E., Jazni, J.E., Lagier, J.E.: Analysis of a thermal behaviour of the fuel supply pipe in a low thrust monopropellant engines. In: 4th Argentinian Congress in Space Technology (CATE), Buenos Aires (2007)
8.
go back to reference Çengel, Y.A., Ghajar, A.J.: Heat and Mass Transfer. Fundamentals and Applications, 4th edn. McGraw Hill, New York (2011) Çengel, Y.A., Ghajar, A.J.: Heat and Mass Transfer. Fundamentals and Applications, 4th edn. McGraw Hill, New York (2011)
9.
go back to reference Emmons, D.L.: Design criteria manual for long-life monopropellant engines. Technical Report AFRPL-TR-77-6, Rocket Research Company, Redmond (1977) Emmons, D.L.: Design criteria manual for long-life monopropellant engines. Technical Report AFRPL-TR-77-6, Rocket Research Company, Redmond (1977)
10.
go back to reference Gagosian, J.: Hydrazine handbook. Technical Report, Rocket Research Company, Redmond (1993) Gagosian, J.: Hydrazine handbook. Technical Report, Rocket Research Company, Redmond (1993)
11.
go back to reference Giusti, S.M., Novotny, S.M.: Design of bi-metallic devices based on the topological derivative concept. Mech. Res. Commun. 65, 1–8 (2015)CrossRef Giusti, S.M., Novotny, S.M.: Design of bi-metallic devices based on the topological derivative concept. Mech. Res. Commun. 65, 1–8 (2015)CrossRef
12.
go back to reference Giusti, S.M., Novotny, A.A., de Souza Neto, E.A., Feijóo, R.A.: Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. J. Mech. Phys. Solids 57(3), 555–570 (2009)MathSciNetCrossRef Giusti, S.M., Novotny, A.A., de Souza Neto, E.A., Feijóo, R.A.: Sensitivity of the macroscopic elasticity tensor to topological microstructural changes. J. Mech. Phys. Solids 57(3), 555–570 (2009)MathSciNetCrossRef
13.
go back to reference Giusti, S.M., Novotny, A.A., de Souza Neto, E.A.: Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 1703–1723 (2010)MathSciNetCrossRef Giusti, S.M., Novotny, A.A., de Souza Neto, E.A.: Sensitivity of the macroscopic response of elastic microstructures to the insertion of inclusions. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 1703–1723 (2010)MathSciNetCrossRef
14.
go back to reference Giusti, S.M., Mello, L.M.A., Silva, E.C.N.: Piezoresistive device optimization using topological derivative concepts. Struct. Multidiscip. Optim. 50, 453–464 (2014)MathSciNetCrossRef Giusti, S.M., Mello, L.M.A., Silva, E.C.N.: Piezoresistive device optimization using topological derivative concepts. Struct. Multidiscip. Optim. 50, 453–464 (2014)MathSciNetCrossRef
15.
go back to reference Giusti, S.M., Ferrer, A., Oliver, J.: Topological sensitivity analysis in heterogeneous anisotropic elasticity problem. Theoretical and computational aspects. Comput. Methods Appl. Mech. Eng. 311, 134–150 (2016)CrossRef Giusti, S.M., Ferrer, A., Oliver, J.: Topological sensitivity analysis in heterogeneous anisotropic elasticity problem. Theoretical and computational aspects. Comput. Methods Appl. Mech. Eng. 311, 134–150 (2016)CrossRef
16.
go back to reference Giusti, S.M., Mróz, Z., Sokolowski, J., Novotny, A.A.: Topology design of thermomechanical actuators. Struct. Multidiscip. Optim. 55, 1575–1587 (2017)MathSciNetCrossRef Giusti, S.M., Mróz, Z., Sokolowski, J., Novotny, A.A.: Topology design of thermomechanical actuators. Struct. Multidiscip. Optim. 55, 1575–1587 (2017)MathSciNetCrossRef
17.
go back to reference Hintermüller, M., Laurain, A.: Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vision 35, 1–22 (2009)MathSciNetCrossRef Hintermüller, M., Laurain, A.: Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vision 35, 1–22 (2009)MathSciNetCrossRef
18.
go back to reference Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36(2), 235–265 (2012)MathSciNetCrossRef Hintermüller, M., Laurain, A., Novotny, A.A.: Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math. 36(2), 235–265 (2012)MathSciNetCrossRef
19.
go back to reference Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vols. 1–2. Dunod, Paris (1968)MATH Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vols. 1–2. Dunod, Paris (1968)MATH
20.
go back to reference Lopes, C.G., Santos, R.B., Novotny, A.A.: Topological derivative-based topology optimization of structures subject to multiple load-cases. Latin Am. J. Solids Struct. 12, 834–860 (2015)CrossRef Lopes, C.G., Santos, R.B., Novotny, A.A.: Topological derivative-based topology optimization of structures subject to multiple load-cases. Latin Am. J. Solids Struct. 12, 834–860 (2015)CrossRef
21.
go back to reference Nash, S.G., Griva, I., Sofer, A.: Linear and Nonlinear Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2009) Nash, S.G., Griva, I., Sofer, A.: Linear and Nonlinear Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2009)
22.
go back to reference Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Berlin (2013) Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Berlin (2013)
23.
go back to reference Osher, S., Sethian, J.A.: Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 78, 12–49 (1988)MathSciNetCrossRef Osher, S., Sethian, J.A.: Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 78, 12–49 (1988)MathSciNetCrossRef
24.
go back to reference Rao, S.S.: Engineering Optimization. Theory and Practice, 4th edn. Wiley, New Jersey (2009) Rao, S.S.: Engineering Optimization. Theory and Practice, 4th edn. Wiley, New Jersey (2009)
25.
go back to reference Salençon, J.: Handbook of Continuum Mechanics. General Concepts Thermoelasticity. Springer, Berlin (2001) Salençon, J.: Handbook of Continuum Mechanics. General Concepts Thermoelasticity. Springer, Berlin (2001)
26.
go back to reference Sales, V., Novotny, A.A., Rivera, J.M.: Energy change to insertion of inclusions associated with the Reissner-Mindlin plate bending model. Int. J. Solids Struct. 59, 132–139 (2013)CrossRef Sales, V., Novotny, A.A., Rivera, J.M.: Energy change to insertion of inclusions associated with the Reissner-Mindlin plate bending model. Int. J. Solids Struct. 59, 132–139 (2013)CrossRef
27.
go back to reference Salomone, J.E., Giusti, S.M., Sanna, A.D., Micheloud, P.D., Manavella, L.: Study and optimization of structural components of low thrust monopropellants engine. In: 3th Argentinian Congress in Mechanical Engineering (CAIM), Buenos Aires (2012) Salomone, J.E., Giusti, S.M., Sanna, A.D., Micheloud, P.D., Manavella, L.: Study and optimization of structural components of low thrust monopropellants engine. In: 3th Argentinian Congress in Mechanical Engineering (CAIM), Buenos Aires (2012)
28.
go back to reference Salomone, J.E., Lagier, J.E., Cova, W.J.D., Gonzalez, G.J., Yasielski, R.: Development of a monopropellant thruster of 1.5n to control the orbit and attitude of satellites. In: 4th Argentinian Congress in Space Technology (CATE), Buenos Aires (2007) Salomone, J.E., Lagier, J.E., Cova, W.J.D., Gonzalez, G.J., Yasielski, R.: Development of a monopropellant thruster of 1.5n to control the orbit and attitude of satellites. In: 4th Argentinian Congress in Space Technology (CATE), Buenos Aires (2007)
29.
go back to reference Salomone, J.E., Giusti, S.M., Sanna, D.A., Gonzalez, G.J., Cova, W.J.D.: Thermostructural simulation and optimization of a monopropellant engine for space application. In: 6th Argentinian Congress in Space Technology (CATE), La Punta (2011) Salomone, J.E., Giusti, S.M., Sanna, D.A., Gonzalez, G.J., Cova, W.J.D.: Thermostructural simulation and optimization of a monopropellant engine for space application. In: 6th Argentinian Congress in Space Technology (CATE), La Punta (2011)
30.
go back to reference Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)MathSciNetCrossRef Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999)MathSciNetCrossRef
31.
go back to reference Sutton, G.P.: Rocket Propulsion Elements. Wiley, New York (1963) Sutton, G.P.: Rocket Propulsion Elements. Wiley, New York (1963)
32.
go back to reference Sutton, D.: Hydrazine thrusters for space applications. J. Br. Interplanet. Soc. 25, 537–551 (1972) Sutton, D.: Hydrazine thrusters for space applications. J. Br. Interplanet. Soc. 25, 537–551 (1972)
33.
go back to reference Taylor, R.L., Zienkiewicz, O.C.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000) Taylor, R.L., Zienkiewicz, O.C.: The Finite Element Method. Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)
34.
go back to reference Van Goethem, N., Novotny, A.A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33(16), 197–1994 (2010)MathSciNetMATH Van Goethem, N., Novotny, A.A.: Crack nucleation sensitivity analysis. Math. Methods Appl. Sci. 33(16), 197–1994 (2010)MathSciNetMATH
Metadata
Title
Optimal Topological Design of a Thermal Isolator for a Monopropellant Space Thruster
Authors
Sebastián Miguel Giusti
Augusto Alejandro Romero
Javier Eduardo Salomone
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-10501-3_6

Premium Partner