Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

4. Optimal UAV Caching and Trajectory Design in the AGVN

Authors : Huaqing Wu, Feng Lyu, Xuemin Shen

Published in: Mobile Edge Caching in Heterogeneous Vehicular Networks

Publisher: Springer International Publishing

share
SHARE

Abstract

In this chapter, we investigate the UAV-assisted mobile edge caching to assist terrestrial vehicular networks in delivering high-bandwidth content files. To maximize the overall network throughput, we formulate a joint caching and trajectory optimization (JCTO) problem to jointly optimize content placement, content delivery, and UAV trajectory. Considering the intercoupled decisions and the limited UAV energy, the formulated JCTO problem is intractable directly and timely. Therefore, we propose a deep supervised learning (DSL) scheme to enable intelligent edge for real-time decision-making in the highly dynamic vehicular networks. Specifically, we first propose a clustering-based two-layered (CBTL) algorithm to solve the JCTO problem offline. With a given content placement strategy, we devise a time-based graph decomposition method to jointly optimize the content delivery and trajectory design, with which we then leverage the particle swarm optimization (PSO) algorithm to further optimize the content placement. We then design a convolutional neural network (CNN)-based DSL architecture to make fast decisions online. The network density and content request distribution with spatial–temporal dimensions are labeled as channeled images and input to the CNN-based model, and the results achieved by the CBTL algorithm are labeled as model outputs. With the CNN-based model, a function mapping the input network information to output decisions can be intelligently learnt to make timely decisions. Extensive trace-driven experiments are carried out to demonstrate the efficiency of CBTL in solving the JCTO problem and the superior learning performance with the CNN-based model.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
In reality, for files with different sizes, the analysis can be easily extended by dividing each file into chunks of equal size.
 
2
Features of a location may include weather characteristics, historical park, and upcoming famous events; a content file is associated with features such as file type and size, metadata, keywords, or tags. To simplify the model, we use a random value to represent the features of a grid/file, but this basic model can be easily extended to multi-dimensional feature vectors.
 
3
In the remainder of this chapter, v and (i, j) are used interchangeably to represent a grid square.
 
4
The UAV returns to the UAV control center at time t T ≤ T U. From time slot t T+1 to T U, the UAV stays in the UAV center without content delivery and charges its battery for the next flight.
 
5
Throughput percentage loss is defined as \(\frac {\hat {R}- \tilde {R}}{\hat {R}}\), where \(\hat {R}\) and \(\tilde {R}\) are the achievable network throughput of the CBTL-based optimization algorithm and the CNN-based learning model, respectively.
 
Literature
1.
go back to reference F. Lyu, H. Zhu, N. Cheng, H. Zhou, W. Xu, M. Li, X. Shen, Characterizing urban vehicle-to-vehicle communications for reliable safety applications. IEEE Trans. Intell. Transp. Syst. 21(6), 2586–2602 (2020) CrossRef F. Lyu, H. Zhu, N. Cheng, H. Zhou, W. Xu, M. Li, X. Shen, Characterizing urban vehicle-to-vehicle communications for reliable safety applications. IEEE Trans. Intell. Transp. Syst. 21(6), 2586–2602 (2020) CrossRef
3.
go back to reference H. Wu, J. Chen, W. Xu, N. Cheng, W. Shi, L. Wang, X. Shen, Delay-minimized edge caching in heterogeneous vehicular networks: a matching-based approach. IEEE Trans. Wireless Commun. 19(10), 6409–6424 (2020) CrossRef H. Wu, J. Chen, W. Xu, N. Cheng, W. Shi, L. Wang, X. Shen, Delay-minimized edge caching in heterogeneous vehicular networks: a matching-based approach. IEEE Trans. Wireless Commun. 19(10), 6409–6424 (2020) CrossRef
4.
go back to reference J. Chen, H. Wu, P. Yang, F. Lyu, X. Shen, Cooperative edge caching with location-based and popular contents for vehicular networks. IEEE Trans. Veh. Technol. 69(9), 10291–10305 (2020) CrossRef J. Chen, H. Wu, P. Yang, F. Lyu, X. Shen, Cooperative edge caching with location-based and popular contents for vehicular networks. IEEE Trans. Veh. Technol. 69(9), 10291–10305 (2020) CrossRef
5.
go back to reference G.Y. Handler, I. Zang, A dual algorithm for the constrained shortest path problem. Networks 10(4), 293–309 (1980) MathSciNetCrossRef G.Y. Handler, I. Zang, A dual algorithm for the constrained shortest path problem. Networks 10(4), 293–309 (1980) MathSciNetCrossRef
6.
go back to reference Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015) CrossRef Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015) CrossRef
7.
go back to reference F. Ono, H. Ochiai, R. Miura, A wireless relay network based on unmanned aircraft system with rate optimization. IEEE Trans. Wireless Commun. 15(11), 7699–7708 (2016) CrossRef F. Ono, H. Ochiai, R. Miura, A wireless relay network based on unmanned aircraft system with rate optimization. IEEE Trans. Wireless Commun. 15(11), 7699–7708 (2016) CrossRef
8.
go back to reference E. Baştuğ, M. Bennis, E. Zeydan, M.A. Kader, I.A. Karatepe, A.S. Er, M. Debbah, Big data meets telcos: a proactive caching perspective. J. Commun. Netw. 17(6), 549–557 (2015) CrossRef E. Baştuğ, M. Bennis, E. Zeydan, M.A. Kader, I.A. Karatepe, A.S. Er, M. Debbah, Big data meets telcos: a proactive caching perspective. J. Commun. Netw. 17(6), 549–557 (2015) CrossRef
9.
go back to reference B. Chen, C. Yang, Caching policy for cache-enabled D2D communications by learning user preference. IEEE Trans. Commun. 66(12), 6586–6601 (2018) CrossRef B. Chen, C. Yang, Caching policy for cache-enabled D2D communications by learning user preference. IEEE Trans. Commun. 66(12), 6586–6601 (2018) CrossRef
10.
go back to reference W. Shi, J. Li, N. Cheng, F. Lyu, S. Zhang, H. Zhou, X. Shen, Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks. IEEE Trans. Veh. Technol. 68(8), 8145–8158 (2019) CrossRef W. Shi, J. Li, N. Cheng, F. Lyu, S. Zhang, H. Zhou, X. Shen, Multi-drone 3-D trajectory planning and scheduling in drone-assisted radio access networks. IEEE Trans. Veh. Technol. 68(8), 8145–8158 (2019) CrossRef
11.
go back to reference H. Wu, J. Chen, F. Lyu, L. Wang, X. Shen, Joint caching and trajectory design for cache-enabled UAV in vehicular networks, in Proc. IEEE 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an (2019), pp. 1–6 H. Wu, J. Chen, F. Lyu, L. Wang, X. Shen, Joint caching and trajectory design for cache-enabled UAV in vehicular networks, in Proc. IEEE 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an (2019), pp. 1–6
12.
go back to reference Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wireless Commun. 18(4), 2329–2345 (2019) CrossRef Y. Zeng, J. Xu, R. Zhang, Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wireless Commun. 18(4), 2329–2345 (2019) CrossRef
13.
go back to reference X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, J. Rao, AI-assisted network-slicing based next-generation wireless networks. IEEE Open J. Veh. Technol. 1(1), 45–66 (2020) CrossRef X. Shen, J. Gao, W. Wu, K. Lyu, M. Li, W. Zhuang, X. Li, J. Rao, AI-assisted network-slicing based next-generation wireless networks. IEEE Open J. Veh. Technol. 1(1), 45–66 (2020) CrossRef
14.
go back to reference Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019) CrossRef Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang, Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019) CrossRef
15.
go back to reference A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe (2012), pp. 1097–1105 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe (2012), pp. 1097–1105
16.
go back to reference S. Lai, L. Xu, K. Liu, J. Zhao, Recurrent convolutional neural networks for text classification, in Proc. Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin (2015), pp. 2267–2273 S. Lai, L. Xu, K. Liu, J. Zhao, Recurrent convolutional neural networks for text classification, in Proc. Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin (2015), pp. 2267–2273
17.
go back to reference X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, Y. Wang, Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017) X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, Y. Wang, Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction. Sensors 17(4), 818 (2017)
18.
go back to reference E.B. Rodrigues, F.R.M. Lima, T.F. Maciel, F.R.P. Cavalcanti, Maximization of user satisfaction in OFDMA systems using utility-based resource allocation. Wireless Commun. Mob. Comput. 16(4), 376–392 (2016) CrossRef E.B. Rodrigues, F.R.M. Lima, T.F. Maciel, F.R.P. Cavalcanti, Maximization of user satisfaction in OFDMA systems using utility-based resource allocation. Wireless Commun. Mob. Comput. 16(4), 376–392 (2016) CrossRef
19.
go back to reference T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002) CrossRef T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002) CrossRef
21.
go back to reference L. Liu, Y. Song, H. Zhang, H. Ma, A.V. Vasilakos, Physarum optimization: a biology-inspired algorithm for the Steiner tree problem in networks. IEEE Trans. Comput. 64(3), 818–831 (2015) MathSciNetCrossRef L. Liu, Y. Song, H. Zhang, H. Ma, A.V. Vasilakos, Physarum optimization: a biology-inspired algorithm for the Steiner tree problem in networks. IEEE Trans. Comput. 64(3), 818–831 (2015) MathSciNetCrossRef
22.
go back to reference M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002) CrossRef M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002) CrossRef
23.
go back to reference S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in Proceedings of Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML) vol. 37 (2015), pp. 448–456 S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in Proceedings of Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML) vol. 37 (2015), pp. 448–456
Metadata
Title
Optimal UAV Caching and Trajectory Design in the AGVN
Authors
Huaqing Wu
Feng Lyu
Xuemin Shen
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-88878-7_4