Skip to main content
Top

2018 | OriginalPaper | Chapter

Optimising 3D Printed Concrete Structures Using Topology Optimisation

Authors : Pascal Martens, Maarten Mathot, Freek Bos, Jeroen Coenders

Published in: High Tech Concrete: Where Technology and Engineering Meet

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Additive manufacturing and 3D printing are rapidly developing digital fabrication techniques (Lu et al. 2015). After the first steps in small scale printing of metals (Frazier 2014) and plastics (Gibson et al. 2014) have been made, research from various groups around the world is now also focusing on large scale printing in concrete (Lim et al. 2012) and making this technology more suitable for the construction scale. The potential of using this technology is that it will be possible to create complex and/or customised concrete designs with the expectation that the costs will be low and the construction speeds will be high. Additionally, this new technology will provide opportunities to create more efficient structures. Structures can already be optimised in the early stages of the design for weight and structural performance, but the resulting optimised structures are often difficult to manufacture due to the resulting geometry of the design. Additive manufacturing can address this issue without high costs for moulds and labour.
This paper will present a novel methodology to include material performance and manufacturing constraints of 3D printed concrete in design optimisation processes. The study examines the possibility to optimise concrete structures in the design phase. In order to save material and thus create more sustainable and more cost efficient structures, a topology optimisation method has been created specifically for 3D printed concrete. Traditional topology optimisation methods consider isotropic and linear elastic material and will not necessarily produce realisable and reliable optimised structures. In the algorithm presented constraints of the printing process and material properties from physical testing of this layered material have been considered in the optimisation. By adopting this methodology more realistic and feasible optimal concrete structures can be designed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer Science & Business Media (2003) Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer Science & Business Media (2003)
go back to reference Burden, R.L., Faires, J.D.: Numerical Analysis, 3rd edn. PWS Publishers, Boston (1985). ISBN 0–87150-857-5 Burden, R.L., Faires, J.D.: Numerical Analysis, 3rd edn. PWS Publishers, Boston (1985). ISBN 0–87150-857-5
go back to reference Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26), 3443–3459 (2001)CrossRefMATH Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26), 3443–3459 (2001)CrossRefMATH
go back to reference Buswell, R.A., Soar, R.C., Gibb, A.G., Thorpe, A.: Freeform construction: mega-scale rapid manufacturing for construction. Autom. constr. 16(2), 224–231 (2007)CrossRef Buswell, R.A., Soar, R.C., Gibb, A.G., Thorpe, A.: Freeform construction: mega-scale rapid manufacturing for construction. Autom. constr. 16(2), 224–231 (2007)CrossRef
go back to reference Doomen, C.: The effect of layered manufacturing on the strength properties of printable concrete. Master’s thesis. Eindhoven University of Technology (2016) Doomen, C.: The effect of layered manufacturing on the strength properties of printable concrete. Master’s thesis. Eindhoven University of Technology (2016)
go back to reference Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef Frazier, W.E.: Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014)CrossRef
go back to reference Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer, New York (2014) Gibson, I., Rosen, D., Stucker, B.: Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. Springer, New York (2014)
go back to reference Khoshnevis, B.: Automated construction by contour crafting—related robotics and information technologies. Autom. constr. 13(1), 5–19 (2004)CrossRef Khoshnevis, B.: Automated construction by contour crafting—related robotics and information technologies. Autom. constr. 13(1), 5–19 (2004)CrossRef
go back to reference Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G., Thorpe, T.: Developments in construction-scale additive manufacturing processes. Autom. Constr. 21, 262–268 (2012)CrossRef Lim, S., Buswell, R.A., Le, T.T., Austin, S.A., Gibb, A.G., Thorpe, T.: Developments in construction-scale additive manufacturing processes. Autom. Constr. 21, 262–268 (2012)CrossRef
go back to reference Lu, B., Li, D., Tian, X.: Development trends in additive manufacturing and 3d printing. Engineering 1(1), 085–089 (2015)CrossRef Lu, B., Li, D., Tian, X.: Development trends in additive manufacturing and 3d printing. Engineering 1(1), 085–089 (2015)CrossRef
go back to reference Melchels, F.P., Feijen, J., Grijpma, D.W.: A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)CrossRef Melchels, F.P., Feijen, J., Grijpma, D.W.: A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24), 6121–6130 (2010)CrossRef
go back to reference Pegna, J.: Exploratory investigation of solid freeform construction. Automat. Constr. 5(5), 427–437 (1997)CrossRef Pegna, J.: Exploratory investigation of solid freeform construction. Automat. Constr. 5(5), 427–437 (1997)CrossRef
Metadata
Title
Optimising 3D Printed Concrete Structures Using Topology Optimisation
Authors
Pascal Martens
Maarten Mathot
Freek Bos
Jeroen Coenders
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-59471-2_37