Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

28-11-2018 | Original | Issue 7/2019

Archive of Applied Mechanics 7/2019

\({\mathcal {H}}_{2}\) optimization and numerical study of inerter-based vibration isolation system helical spring fatigue life

Journal:
Archive of Applied Mechanics > Issue 7/2019
Authors:
D. Čakmak, Z. Tomičević, H. Wolf, Ž. Božić
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper presents an optimization and numerical analysis of vibration-induced fatigue in a two degree-of-freedom inerter-based vibration isolation system. The system is comprised of a primary, e.g. source body, and a secondary, e.g. receiving body, mutually connected through an isolator. The isolator includes a spring, a dashpot and an inerter. Inerter is a mechanical device which produces a force proportional to relative acceleration between its terminals. A broadband frequency force excitation of the primary body is imposed throughout the study. The goal of the proposed optimization is to prolong the fatigue life of the ground connecting helical spring of the secondary body. The optimization is based on minimizing separately the displacement and velocity amplitudes. Both optimization criteria are compared with regard to spring fatigue life improvement for fair benchmark comparison. The inerter-based optimized systems, in which the \({\mathcal {H}}_{2}\) index of the receiving body is minimized, are also compared with the optimized systems without inerter. Notable improvements are observed in inerter-based systems due to the inclusion of an optimally tuned inerter in the isolator. The proposed analytical vibration fatigue method optimization results are compared with the finite element method results, and a very good agreement is observed. Most accurate helical spring deflection and stress correction factors are discussed and determined. Furthermore, the inerter concept is successfully implemented into finite element-based dynamic solution.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 7/2019

Archive of Applied Mechanics 7/2019 Go to the issue

Premium Partner

    Image Credits